鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对...鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对参数的依赖。通过设计参数化的阈值函数和展开主成分追踪算法构建深度网络框架,采用反向传播和损失函数最小化实现参数的端到端学习。在多个视频数据集上进行检测实验,结果表明:LNRPCA在视觉效果和F-measure值(平均为0.7895)方面均优于对比算法,相比TNN算法提高9.89%;在计算时间上表现出更高的效率和优越性。展开更多
近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归...近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归的RPCA运动目标检测方法.该方法以RPCA为基础,利用3维全变分模型增强前景的时空连续性,去除动态背景干扰,得到清晰完整的前景.同时,利用基于扩散张量的核回归对背景的时空相关性建模,去除噪声干扰,从而精确恢复背景.在多组公开数据集上的实验结果表明,该方法在动态背景、光照变化等复杂场景中能够较为精确地检测出运动目标和恢复背景.展开更多
为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。...为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。算法通过将RPCA提取的视频当前帧的背景作为三帧差分法的中间帧与视频当前帧的前一帧和视频当前帧分别进行邻间差分,使得三帧差分法在运动目标检测过程中避免了背景像素点所带来的影响,消除了"空洞"现象。仿真结果表明该算法在完整性和准确性方面要优于其他三种传统运动目标检测算法,可以在复杂背景环境中实现准确的运动目标提取。展开更多
高光谱图像在采集过程中极易产生高斯、椒盐、条纹等噪声,从而对后续的地物空间识别工作产生影响.因此有效的噪声去除工作在高光谱图像处理中是不可缺少的一步.鲁棒主成分分析(Robust Principal Component Analysis,RPCA)是能将受稀疏...高光谱图像在采集过程中极易产生高斯、椒盐、条纹等噪声,从而对后续的地物空间识别工作产生影响.因此有效的噪声去除工作在高光谱图像处理中是不可缺少的一步.鲁棒主成分分析(Robust Principal Component Analysis,RPCA)是能将受稀疏噪声干扰的低秩矩阵进行有效恢复的模型.高光谱图像由于其光谱特征之间存在很高的相关性,即每个光谱特征可以用光谱端元的线性组合来表示,因此高光谱图像具有高度低秩性,从而RPCA算法能在高光谱图像去噪中取得显著的效果.结合高光谱图像空间邻域相似性和改进RPCA(Spatial Neighboring Similarity and Improve RPCA,S_IRPCA),提出一种新的高光谱图像去噪算法.算法在去除噪声的同时,更好的保留了细节信息.实验表明,算法与主流的低秩恢复算法相比,无论在主观视觉上还是在客观评价指标上,都做到了显著提升.展开更多
鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权L...鲁棒主成分分析(Robust principal component analysis,RPCA)模型中秩函数和L0范数的求解是非确定性多项式(Nondeterministic polynominal,NP)难问题,凸近似模型的求解通常会导致过收缩。本文结合加权方法和Lp范数提出了一种基于双加权Lp范数的RPCA模型,利用加权S p范数低秩项和加权Lp范数稀疏项分别对RPCA框架中的低秩恢复问题和稀疏恢复问题进行建模,使其更接近秩函数和L0范数最小化问题的解,提升了矩阵秩估计和稀疏估计的准确性。为了验证模型性能,本文利用图像的非局部自相似性,结合相似图像块组的低秩性与椒盐噪声的稀疏性,将双加权Lp范数鲁棒主成分分析模型应用于去除椒盐噪声过程中。定量与定性的实验结果表明,本文模型性能优于其他模型,同时奇异值过收缩分析也表明本文模型能够有效抑制秩成分的过度收缩。展开更多
文摘鲁棒主成分分析(robust principal component analysis,RPCA)是视频显著性检测中的常用算法,但其参数需要手动调试且针对不同视频需重新选择,导致效率较低。为解决这一问题,提出一种可学习鲁棒主成分分析深度网络(LNRPCA)模型,以减少对参数的依赖。通过设计参数化的阈值函数和展开主成分追踪算法构建深度网络框架,采用反向传播和损失函数最小化实现参数的端到端学习。在多个视频数据集上进行检测实验,结果表明:LNRPCA在视觉效果和F-measure值(平均为0.7895)方面均优于对比算法,相比TNN算法提高9.89%;在计算时间上表现出更高的效率和优越性。
文摘近年来,鲁棒主成分分析法(Robust Principal Component Analysis,RPCA)被广泛应用到运动目标检测中,但该类方法未能有效利用运动目标的时空连续性先验,容易将动态背景误判为运动目标,且背景恢复精度不高.为此提出一种基于全变分-核回归的RPCA运动目标检测方法.该方法以RPCA为基础,利用3维全变分模型增强前景的时空连续性,去除动态背景干扰,得到清晰完整的前景.同时,利用基于扩散张量的核回归对背景的时空相关性建模,去除噪声干扰,从而精确恢复背景.在多组公开数据集上的实验结果表明,该方法在动态背景、光照变化等复杂场景中能够较为精确地检测出运动目标和恢复背景.
文摘为了实现在监控视频中对人体运动目标的准确提取,针对传统的三帧差分法在运动目标提取过程中容易出现"空洞"现象,提出了一种鲁棒主成分分析(robust principal component analysis,RPCA)与三帧差分相融合的运动目标检测算法。算法通过将RPCA提取的视频当前帧的背景作为三帧差分法的中间帧与视频当前帧的前一帧和视频当前帧分别进行邻间差分,使得三帧差分法在运动目标检测过程中避免了背景像素点所带来的影响,消除了"空洞"现象。仿真结果表明该算法在完整性和准确性方面要优于其他三种传统运动目标检测算法,可以在复杂背景环境中实现准确的运动目标提取。
文摘高光谱图像在采集过程中极易产生高斯、椒盐、条纹等噪声,从而对后续的地物空间识别工作产生影响.因此有效的噪声去除工作在高光谱图像处理中是不可缺少的一步.鲁棒主成分分析(Robust Principal Component Analysis,RPCA)是能将受稀疏噪声干扰的低秩矩阵进行有效恢复的模型.高光谱图像由于其光谱特征之间存在很高的相关性,即每个光谱特征可以用光谱端元的线性组合来表示,因此高光谱图像具有高度低秩性,从而RPCA算法能在高光谱图像去噪中取得显著的效果.结合高光谱图像空间邻域相似性和改进RPCA(Spatial Neighboring Similarity and Improve RPCA,S_IRPCA),提出一种新的高光谱图像去噪算法.算法在去除噪声的同时,更好的保留了细节信息.实验表明,算法与主流的低秩恢复算法相比,无论在主观视觉上还是在客观评价指标上,都做到了显著提升.