为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE...为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。展开更多
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of ...The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.展开更多
In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedo...In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory...A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory and the characteristics of robust control system are taken into account. A new kind of switching index function by estimating uncertainty is designed. Furthermore, stability of the closed system is analyzed by the small gain theorem in the sense of exponentially weighted L2 norm. And simulation is done on a plant with both parameter uncertainty and un-modeled dynamics. Both theoretical analysis and simulation results show that this new hierarchical switching control system can control the plant with large uncertainties effectively and has good performance of tracking and stability.展开更多
The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based ...The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.展开更多
为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。...为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。展开更多
文摘为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
文摘The thermal induced errors can account for as much as 70% of the dimensional errors on a workpiece. Accurate modeling of errors is an essential part of error compensation. Base on analyzing the existing approaches of the thermal error modeling for machine tools, a new approach of regression orthogonal design is proposed, which combines the statistic theory with machine structures, surrounding condition, engineering judgements, and experience in modeling. A whole computation and analysis procedure is given. Therefore, the model got from this method are more robust and practical than those got from the present method that depends on the modeling data completely. At last more than 100 applications of CNC turning center with only one thermal error model are given. The cutting diameter variation reduces from more than 35 μm to about 12 μm with the orthogonal regression modeling and compensation of thermal error.
基金Project(2003AA430200) supported by the National Hi-Tech Research and Development Program(863) of China
文摘In order to find a feasible way to control excavator’s arm and realize autonomous excavation, the dynamic model for the boom of excavator’s arm which was regarded as a planar manipulator with three degrees of freedom was constructed with Lagrange equation. The excavator was retrofitted with electrohydraulic proportional valves, associated sensors (three inclinometers) and a computer control system (the motion controller of EPEC). The full nonlinear mathematic model of electrohydraulic proportional system was achieved. A discontinuous projection based on an adaptive robust controller to approximate the nonlinear gain coefficient of the valve was presented to deal with the nonlinearity of the whole system, the error was dealt with by robust feedback and an adaptive robust controller was designed. The experiment results of the boom motion control show that, using the controller, good performance for tracking can be achieved, and the peak tracking error of boom angles is less than 4°.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Supported by National Natural Science Foundation of China (60504026, 60674041) and National High Technology Research and Development Program of China (863 Program)(2006AA04Z173).
基金Supported by National Key Program of Technology (2002BA404A21)
文摘A new hierarchical switching control system of multiple models based on robust control theory is designed for some plant with large uncertainties. The model set and controller set are designed by robust control theory and the characteristics of robust control system are taken into account. A new kind of switching index function by estimating uncertainty is designed. Furthermore, stability of the closed system is analyzed by the small gain theorem in the sense of exponentially weighted L2 norm. And simulation is done on a plant with both parameter uncertainty and un-modeled dynamics. Both theoretical analysis and simulation results show that this new hierarchical switching control system can control the plant with large uncertainties effectively and has good performance of tracking and stability.
基金Supported by National Natural Science Foundation of P.R.China(60174001)National Natural Science Foundation of Beijing(4022007)
文摘The problem of controlling a single-input-single-output plant without prior knowledge of high frequency gain sign is addressed by using the model reference robust control approach.A switching method is proposed based on a monitoring function so that after a finite number of swi- tchings the tracking error converges to zero exponentially.Furthermore,it is shown that if some initial states of the closed-loop system are zero,only one switching is needed.
文摘为更精确地预测航班过站时间,将全国机场按照规模差异及不同地理位置所导致的客流量差异和天气差异对航班过站时间造成的不同影响进行分类,基于各类机场航班数据,构建混合轻量级梯度提升机算法(LightGBM)模型对航班过站时间分类预测。引入自适应鲁棒损失函数(adaptive robust loss function,ARLF)改进LightGBM模型损失函数,降低航班数据中存在离群值的影响;通过改进的麻雀搜索算法对改进后的LightGBM模型进行参数寻优,形成混合LightGBM模型。采用全国2019年全年航班数据进行验证,实验结果验证了方法的可行性。