期刊文献+
共找到38篇文章
< 1 2 >
每页显示 20 50 100
Robust multi-layer extreme learning machine using bias-variance tradeoff 被引量:1
1
作者 YU Tian-jun YAN Xue-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第12期3744-3753,共10页
As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large... As a new neural network model,extreme learning machine(ELM)has a good learning rate and generalization ability.However,ELM with a single hidden layer structure often fails to achieve good results when faced with large-scale multi-featured problems.To resolve this problem,we propose a multi-layer framework for the ELM learning algorithm to improve the model’s generalization ability.Moreover,noises or abnormal points often exist in practical applications,and they result in the inability to obtain clean training data.The generalization ability of the original ELM decreases under such circumstances.To address this issue,we add model bias and variance to the loss function so that the model gains the ability to minimize model bias and model variance,thus reducing the influence of noise signals.A new robust multi-layer algorithm called ML-RELM is proposed to enhance outlier robustness in complex datasets.Simulation results show that the method has high generalization ability and strong robustness to noise. 展开更多
关键词 extreme learning machine deep neural network robustNESS unsupervised feature learning
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
2
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于RLMD-SE-CNN-RELM的水位预测混合模型研究
3
作者 张奇伟 刘月馨 +3 位作者 许雯 徐军杨 陈佳雷 张楚 《人民长江》 北大核心 2025年第3期116-125,133,共11页
精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史... 精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史水位数据进行分解,引入样本熵方法对分量数据进行特征重组以减少数据量;然后利用CNN对重组数据进行特征提取以提高训练速度;最后利用RELM预测每个子序列,将预测结果叠加得到水位序列的最终预测值。以岷江流域下游高场水文站点1997~2020年的日水位数据为研究对象,对模型预测性能进行验证。结果表明:在未来1 d水位预测方面,所构建的混合模型与RELM、CNN-RELM、RLMD-CNN-RELM模型相比,准确度分别提升5.93%,5.91%,0.52%;3种不同预见期(1,2,3 d)下,混合模型预测结果的NSE分别为0.934657,0.932588,0.922955,预报精度均达到甲级。建立的RLMD-SE-CNN-RELM模型预测精度高,稳定性强,可为水位预测和水资源的精准调度提供参考。 展开更多
关键词 水位预测 鲁棒局部均值分解 样本熵 卷积神经网络 正则化极限学习机 岷江流域
在线阅读 下载PDF
基于VMD-ORELM-EC的超短期风速组合预测模型 被引量:1
4
作者 谢东良 郅伦海 +1 位作者 周康 胡峰 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第5期703-711,共9页
为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-... 为提高超短期风速预测的精度,文章提出一种基于变分模态分解(variational mode decomposition,VMD)、离群鲁棒极限学习机(outlier-robust extreme learning machine,ORELM)和误差修正(error correction,EC)的超短期风速组合预测模型VMD-ORELM-EC。首先利用VMD将原始风速序列分解,并对每个分解子序列分别建立ORELM模型,将各子模型预测结果相加得到模型初步预测序列;然后将原始风速序列与初步预测序列相减得到模型的误差序列,并对误差序列进行VMD分解,对分解得到的误差子序列建立ORELM模型,从而得到误差预测序列;最后将模型的初步预测序列与误差预测序列组合得到最终的风速预测序列。利用该文提出的预测模型对北京测风塔实测的风速数据进行分析,结果表明模型可以有效挖掘风速序列特性,在超短期风速预测上具有较高的预测性能。 展开更多
关键词 超短期风速预测 变分模态分解(VMD) 离群鲁棒极限学习机(Orelm) 误差修正(EC)
在线阅读 下载PDF
基于IHS_RELM的网络安全态势预测方法 被引量:3
5
作者 陈虹 王飞 肖振久 《计算机科学》 CSCD 北大核心 2013年第11期108-111,共4页
针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算... 针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算过程中,利用IHS算法的全局搜索能力来优化选取RELM的输入权值和隐含层阈值,在一定程度上提升了RLLM的学习能力和泛化能力。仿真实验表明,与已有的其他预测方法相比,该方法具有更好的预测效果。 展开更多
关键词 和声搜索算法 正则极速学习机 网络安全态势预测 参数优化
在线阅读 下载PDF
基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断 被引量:20
6
作者 李瑞 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第5期127-135,共9页
高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研... 高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研究。提取振动信号多尺度排列熵特征,用于建立结构优化正则化极限学习机(structure optimization regularized extreme learning machine, SO-RELM)故障诊断模型,模型利用K-means优化RELM结构,提高模型识别精确度及稳定性。首先采用自适应噪声完备经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将高压隔膜泵单向阀振动信号自适应分解为多个固有模态分量(intrinsic mode function, IMF),以相关系数为指标,优选包含故障特征信息丰富的分量;然后,计算IMFs的多尺度排列熵值,提取信号的非线性动力学特征;最后,基于多尺度排列熵,建立基于SO-RELM的故障诊断模型。试验结果表明,CEEMDAN多尺度排列熵能够准确表征高压隔膜泵单向阀运行状态的非线性动力学特征,基于CEEMDAN多尺度排列熵建立的SO-RELM故障模型,能够有效识别高压隔膜泵单向阀工况类型,准确率达98.89%。 展开更多
关键词 自适应噪声完备经验模态分解 排列熵 结构优化正则化极限学习机 故障诊断
在线阅读 下载PDF
基于BSA-RELM的纯电动汽车锂离子电池SOC估计 被引量:19
7
作者 吴忠强 尚梦瑶 +2 位作者 申丹丹 戚松岐 朱向东 《计量学报》 CSCD 北大核心 2019年第4期693-699,共7页
提出一种基于鸟群算法优化鲁棒极限学习机的锂离子电池荷电状态估计算法。鲁棒极限学习机克服了极限学习机不能处理异常值的缺点,提高了网络的预测准确率。利用鸟群算法优化鲁棒极限学习机的隐层节点数和调节因子等参数,解决隐层节点数... 提出一种基于鸟群算法优化鲁棒极限学习机的锂离子电池荷电状态估计算法。鲁棒极限学习机克服了极限学习机不能处理异常值的缺点,提高了网络的预测准确率。利用鸟群算法优化鲁棒极限学习机的隐层节点数和调节因子等参数,解决隐层节点数和调节因子等参数难以确定的问题,可进一步提高网络的收敛速度,且利于寻找全局最优值。利用ADVISOR软件采集影响电池荷电状态的主要参数:电流、电压、温度和内阻等进行建模和测试。仿真结果表明,采用鸟群算法优化鲁棒极限学习机比BPNN、RBFNN和FNN的估计误差更小,具有更高的预测精度。 展开更多
关键词 计量学 荷电状态 锂离子电池 纯电动汽车 鸟群算法 鲁棒极限学习机
在线阅读 下载PDF
基于SDAE与RELM的EEG情感识别方法 被引量:3
8
作者 连卫芳 晁浩 刘永利 《计算机工程》 CAS CSCD 北大核心 2021年第9期75-83,共9页
针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初... 针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初始特征,使用SDAE进行无监督特征学习,提取初始特征的高层抽象表示。在网络的回归层,使用RELM进行情感分类。在DEAP数据集上的实验结果表明,与SDAE以及DT、KNN等传统基于机器学习的方法相比,该方法在实时性、准确性和泛化性能等方面均有明显提升。 展开更多
关键词 情感识别 脑电信号 情感特征 堆叠式降噪自动编码器 正则化极限学习机
在线阅读 下载PDF
一种基于鲁棒估计的极限学习机方法 被引量:20
9
作者 胡义函 张小刚 +1 位作者 陈华 李晶辉 《计算机应用研究》 CSCD 北大核心 2012年第8期2926-2930,共5页
极限学习机(ELM)是一种单隐层前馈神经网络(single-hidden layer feedforward neural networks,SLFNs),它相较于传统神经网络算法来说结构简单,具有较快的学习速度和良好的泛化性能等优点。ELM的输出权值是由最小二乘法(least square,LE... 极限学习机(ELM)是一种单隐层前馈神经网络(single-hidden layer feedforward neural networks,SLFNs),它相较于传统神经网络算法来说结构简单,具有较快的学习速度和良好的泛化性能等优点。ELM的输出权值是由最小二乘法(least square,LE)计算得出,然而经典的LS估计的抗差能力较差,容易夸大离群点和噪声的影响,从而造成训练出的参数模型不准确甚至得到完全错误的结果。为了解决此问题,提出一种基于M估计的采用加权最小二乘方法来取代最小二乘法计算输出权值的鲁棒极限学习机算法(RBELM),通过对多个数据集进行回归和分类分析实验,结果表明,该方法能够有效降低异常值的影响,具有良好的抗差能力。 展开更多
关键词 极限学习机 稳健估计 鲁棒极限学习机 M估计 神经网络
在线阅读 下载PDF
基于M-ELM的大坝变形安全监控模型 被引量:34
10
作者 胡德秀 屈旭东 +2 位作者 杨杰 程琳 常梦 《水利水电科技进展》 CSCD 北大核心 2019年第3期75-80,共6页
针对大坝变形监测数据存在的非线性强、异常值诊断和剔除工作复杂及传统监控模型抗粗差能力差等问题,结合稳健估计理论抗粗差性强和极限学习机在处理非线性问题方面的优势,建立了基于稳健估计极限学习机的大坝变形安全监控模型。试验确... 针对大坝变形监测数据存在的非线性强、异常值诊断和剔除工作复杂及传统监控模型抗粗差能力差等问题,结合稳健估计理论抗粗差性强和极限学习机在处理非线性问题方面的优势,建立了基于稳健估计极限学习机的大坝变形安全监控模型。试验确定网络隐含层层数,构建4次方损失函数,采用加权最小二乘法计算输出权值,实现原始监测数据的拟合和预测。以某工程大坝变形监测数据为例进行建模分析,结果表明:以反映模型预测精度的均方误差和平均绝对百分误差及反映模型鲁棒性的中位数绝对偏差作为评价指标,基于稳健估计极限学习机的大坝变形安全监控模型的各项指标明显优于对比模型。 展开更多
关键词 稳健估计 极限学习机 大坝变形 安全监控模型 粗差
在线阅读 下载PDF
一种基于Parzen窗估计的鲁棒ELM烧结温度检测方法 被引量:11
11
作者 陈华 章兢 +1 位作者 张小刚 胡义函 《自动化学报》 EI CSCD 北大核心 2012年第5期841-849,共9页
在回转窑燃煤火焰视频模糊且干扰较大的情况下,基于火焰辐射能量和燃烧稳定程度提取多帧煤粉燃烧图像的统计特征进行烧结温度判断.为克服工业现场特征数据中的粗差干扰,将极限学习机(Extreme learning machine,ELM)与稳健估计理论相结合... 在回转窑燃煤火焰视频模糊且干扰较大的情况下,基于火焰辐射能量和燃烧稳定程度提取多帧煤粉燃烧图像的统计特征进行烧结温度判断.为克服工业现场特征数据中的粗差干扰,将极限学习机(Extreme learning machine,ELM)与稳健估计理论相结合,用训练误差分布的Parzen窗非参数估计构造ELM权矩阵,对其输出层权值进行稳健最小二乘估计.基于上述火焰视频的统计特征,用该改进的鲁棒极限学习机(Robust-ELM)检测烧结带温度.实验结果表明,在视频图像模糊、不能用常规静态图像处理方法软测量烧结带温度时,本文方法可快速有效地检测窑内烧结温度,且检测系统不易受现场干扰,稳定性强。 展开更多
关键词 煤粉燃烧 火焰图像 鲁棒极限学习机 烧结温度 Parzen窗估计
在线阅读 下载PDF
改进在线贯序极限学习机在模式识别中的应用 被引量:13
12
作者 尹刚 张英堂 +1 位作者 李志宁 范红波 《计算机工程》 CAS CSCD 2012年第8期164-166,169,共4页
针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结... 针对传统在线贯序极限学习机存在的过学习和分类器输出不稳定等问题,将结构风险最小化理论引入到极限学习机中,用小波函数替代原有的隐层激励函数构建正则小波极限学习机,并与在线学习方法结合,提出在线正则小波极限学习机。仿真实验结果表明,在线正则小波极限学习机克服过学习和局部最优等问题,能够实现快速在线学习,具有良好的泛化性和鲁棒性。 展开更多
关键词 在线贯序极限学习机 小波分析 在线学习 模式识别 结构风险 泛化性能 鲁棒性
在线阅读 下载PDF
高维数据中鲁棒激活函数的极端学习机及线性降维 被引量:12
13
作者 冯林 刘胜蓝 +1 位作者 张晶 王辉兵 《计算机研究与发展》 EI CSCD 北大核心 2014年第6期1331-1340,共10页
极端学习机(extreme learning machine,ELM)训练速度快、分类率高,已经广泛应用于人脸识别等实际问题中,并取得了较好的效果.但实际问题中的数据往往维数较高,且经常带有噪声及离群点,降低了ELM算法的分类率.这主要是由于:1)输入样本维... 极端学习机(extreme learning machine,ELM)训练速度快、分类率高,已经广泛应用于人脸识别等实际问题中,并取得了较好的效果.但实际问题中的数据往往维数较高,且经常带有噪声及离群点,降低了ELM算法的分类率.这主要是由于:1)输入样本维数过高;2)激活函数选取不当.以上两点使激活函数的输出值趋于零,最终降低了ELM算法的性能.针对第1个问题,提出一种鲁棒的线性降维方法(RAF-global embedding,RAF-GE)预处理高维数据,再通过ELM算法对数据进行分类;而对第2个问题,深入分析不同激活函数的性质,提出一种鲁棒激活函数(robust activation function,RAF),该激活函数可尽量避免激活函数的输出值趋于零,提升RAF-GE及ELM算法的性能.实验证实人脸识别方法的性能普遍优于使用其他激活函数的对比方法. 展开更多
关键词 极端学习机 线性降维 鲁棒激活函数 高维数据 神经网络
在线阅读 下载PDF
考虑负荷自适应检测和修复的鲁棒极限学习机短期负荷预测方法 被引量:25
14
作者 彭显刚 郑伟钦 +1 位作者 林利祥 刘艺 《中国电机工程学报》 EI CSCD 北大核心 2016年第23期6409-6417,6606,共9页
针对现有负荷预测方法对于温度、湿度累积效应下的短期负荷预测精度低的不足,该文提出了一种基于时变Cook距离统计量的负荷异常值检测和基于非参数概率密度估计的负荷自适应修复的鲁棒极限学习机(extreme learning machine,ELM)短期负... 针对现有负荷预测方法对于温度、湿度累积效应下的短期负荷预测精度低的不足,该文提出了一种基于时变Cook距离统计量的负荷异常值检测和基于非参数概率密度估计的负荷自适应修复的鲁棒极限学习机(extreme learning machine,ELM)短期负荷预测方法。首先将历史负荷数据按季节分组,根据每个季节实时负荷和对应的气象因素,利用递归最小二乘法获取历史负荷数据的自适应遗忘因子,构建基于遗忘因子的时变Cook距离统计量,检测负荷数据中的异常值(或强影响值);采用非参数概率密度估计,构建实时负荷与气象因素的随机模型对异常负荷值(或强影响值)进行修复。考虑电力负荷数据异常值对预测精度的影响,采用了一种鲁棒ELM算法对负荷数据进行回归分析;最后,引入基因遗传算法对负荷预测模型参数进行优化,提升负荷预测算法预测准确率;通过实例仿真分析,验证了该方法提高预测精度的有效性。 展开更多
关键词 短期负荷预测 时变Cook距离 非参数概率密度函数估计 累积效应 鲁棒极限学习机算法
在线阅读 下载PDF
基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测 被引量:32
15
作者 彭显刚 潘可达 +2 位作者 张丹 刘艺 林志坚 《电网技术》 EI CSCD 北大核心 2020年第2期603-613,共11页
针对季节性电力负荷划分不准确及温度、湿度对电力负荷的动态性影响,提出一种基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测模型。采用聚类与CART树相结合的方法,根据地区历史负荷数据自适应的确定当地季节性负荷划分规则... 针对季节性电力负荷划分不准确及温度、湿度对电力负荷的动态性影响,提出一种基于季节性负荷自适应划分及重要点分割的多分段短期负荷预测模型。采用聚类与CART树相结合的方法,根据地区历史负荷数据自适应的确定当地季节性负荷划分规则;使用非参数核密度估计方法提取季节典型日负荷曲线,并基于划分结果对各季负荷曲线进行重要点分割;同时根据分割结果,采用基于皮尔逊相关系数加权的相似系数,对各时段负荷进行参考日的筛选,以确定预测模型的输入量,最后提出一种结合纵横交叉算法参数优化的鲁棒极限学习机进行多分段预测模型的建立。通过实例仿真分析,验证了所提方法提高预测精度的有效性。 展开更多
关键词 聚类分析 CART决策树 重要点分割 改进鲁棒极限学习机 短期负荷预测
在线阅读 下载PDF
基于相空间重构与鲁棒极限学习机的时延预测 被引量:5
16
作者 时维国 许超 《系统工程与电子技术》 EI CSCD 北大核心 2019年第2期416-421,共6页
针对网络控制系统(networked control system,NCS)诱导时延具有的时变、随机、非线性等特点,提出了一种相空间重构与鲁棒极限学习机(robust extreme learning machine,RELM)的时延预测算法。首先利用0-1测试对时延序列进行混沌特性检测... 针对网络控制系统(networked control system,NCS)诱导时延具有的时变、随机、非线性等特点,提出了一种相空间重构与鲁棒极限学习机(robust extreme learning machine,RELM)的时延预测算法。首先利用0-1测试对时延序列进行混沌特性检测,再通过改进关联积分法确定重构延迟参数和嵌入维数,进而对时延序列进行重构,新的样本更能真实反映时延变化特性。以重构后的时延序列为训练样本,同时,考虑异常值的稀疏特性,运用RELM进行时延序列预测。该方法具有学习速度快、泛化性能好、可有效降低异常值影响等优点。 展开更多
关键词 网络控制系统 0-1检测 相空间重构 鲁棒极限学习机 时延预测
在线阅读 下载PDF
基于QPSO正则化极限学习机的轴承故障诊断 被引量:5
17
作者 刘鑫 任海莉 《组合机床与自动化加工技术》 北大核心 2021年第3期36-40,共5页
从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编... 从复杂的振动信号中提取有效的故障特征并且得到准确的分类结果,建立可靠的故障诊断方法一直都是滚动轴承故障诊断研究中的关键课题。文章提出一种改进的正则化极限学习机(Regularized Extreme Learning Machine,RELM)应用于降噪自动编码器(Denoising AutoEncoder,DAE)的故障分类方法。首先,将振动信号经过快速傅里叶变换得到的频域系数作为高维数据,然后利用堆叠降噪自动编码器(Stacked Denoising Autoencoders,SDAE)对高维数据进行学习,提取更具鲁棒性的特征,再将该特征作为RELM的输入进行分类,得到故障诊断模型。针对RELM中正则化参数选取困难问题,采用量子粒子群优化算法(Quantum-behaved particle swarm optimization,QPSO)进行参数优化。实验结果表明,基于SDAE-RELM的诊断方法在泛化性和故障识别率都优于SDAE和其他分类算法结合的故障识别方法。 展开更多
关键词 滚动轴承 降噪自动编码器 正则化极限学习机 特征提取
在线阅读 下载PDF
一种基于MapReduce的动态数据流分类算法
18
作者 冯林 姚远 +1 位作者 陈沣 金博 《大连理工大学学报》 EI CAS CSCD 北大核心 2014年第4期461-468,共8页
当前动态数据流下的实时分类问题存在3个难点:针对海量数据的实时处理;概念漂移的跟踪和模型的更新;模型的稳定和鲁棒性.针对上述问题,将极端支持向量机(extreme support vector machine,ESVM)与MapReduce框架结合,提出了带遗忘因子的鲁... 当前动态数据流下的实时分类问题存在3个难点:针对海量数据的实时处理;概念漂移的跟踪和模型的更新;模型的稳定和鲁棒性.针对上述问题,将极端支持向量机(extreme support vector machine,ESVM)与MapReduce框架结合,提出了带遗忘因子的鲁棒ESVM算法.该方法通过构造残差权重矩阵,对残差进行修正,同时加入遗忘因子,提高新样本的作用,从而实现对海量数据处理问题的求解.实验结果显示,所提出方法能够快速有效地对动态数据流进行分类,且结果不易受到噪声干扰,稳定性强. 展开更多
关键词 数据流分类 增量式学习 极端支持向量机(ESVM) MapReduce遗忘因子 鲁棒性
在线阅读 下载PDF
基于低秩约束的极限学习机高效人脸识别算法
19
作者 卢涛 管英杰 +1 位作者 潘兰兰 张彦铎 《计算机科学》 CSCD 北大核心 2018年第3期294-299,共6页
复杂应用场景中,光照变化、遮挡和噪声等干扰使得将像素特征作为相似性度量的识别算法的图像类内差大于类间差,降低了人脸识别性能。针对这一问题,提出了一种低秩约束的极限学习机鲁棒性人脸识别算法,提升了复杂场景下的识别性能。首先... 复杂应用场景中,光照变化、遮挡和噪声等干扰使得将像素特征作为相似性度量的识别算法的图像类内差大于类间差,降低了人脸识别性能。针对这一问题,提出了一种低秩约束的极限学习机鲁棒性人脸识别算法,提升了复杂场景下的识别性能。首先,利用人脸图像分布的子空间线性假设,将待识别图像聚类到相对应的样本子空间;其次,将像素域分解为低秩特征子空间和稀疏误差子空间,依据图像子空间的低秩性对噪声鲁棒的原理,提取人脸图像的低秩结构特征训练极限学习机的前向网络;最后,实现对噪声干扰鲁棒的极限学习机人脸识别算法。实验结果表明,相比前沿的人脸识别算法,所提方法不仅识别精度高、算法时间复杂度低,且具有较好的实用性。 展开更多
关键词 人脸识别 噪声鲁棒特性 低秩矩阵恢复 极限学习机
在线阅读 下载PDF
基于天牛群优化与改进正则化极限学习机的网络入侵检测 被引量:25
20
作者 王振东 刘尧迪 +2 位作者 杨书新 王俊岭 李大海 《自动化学报》 EI CAS CSCD 北大核心 2022年第12期3024-3041,共18页
正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于... 正则化极限学习机(Regularized extreme learning machine,RELM)因其极易于实现、训练速度快等优点在诸多领域均取得了成功应用.对此,本文将RELM引入到入侵检测中,设计了天牛群优化算法(Beetle swarm optimization,BSO),并针对RELM由于随机初始化参数带来的潜在缺陷,提出基于天牛群优化与改进正则化极限学习机(BSO-IRELM)的网络入侵检测算法.使用LU分解求解RELM的输出权值矩阵,进一步缩短了RELM的训练时间,同时利用BSO对RELM的权值和阈值进行联合优化.为避免BSO算法陷入局部最优,引入Tent映射反向学习、莱维飞行的群体学习与动态变异策略提升优化性能.实验结果表明,在机器学习UCI数据集上,相比于RELM、IRELM、GA-IRELM、PSO-IRELM等算法,BSO-IRELM的数据分类性能提升明显.最后,将BSO-IRELM应用于网络入侵检测数据集NSL-KDD,并与BP(Back propagation)、LR(Logistics regression)、RBF(Radial basis function)、AB(AdaBoost)、SVM(Support vector machine)、RELM、IRELM等算法进行了对比,结果证明BSO-IRELM算法在准确率、精确率、真正率和假正率等指标上均具有明显优势. 展开更多
关键词 入侵检测 正则化极限学习机 LU分解 天牛群优化算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部