A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensio...When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.展开更多
Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles i...Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles in the integrin-signaling pathway by directly interacting with and activating integrins,which mediate the cell-extracellular matrix adhesion and signaling.As a widely distributed PTB domain protein and a major member of the kindlin family,kindlin2 interacts withβ3-tail,bridges talin-activated integrins to promote integrin aggregation,and enhances talin-induced integrin activation.Thus,kindlin2 is identified as a coactivator of integrins.Unlike talins,kindlin2 cannot directly alter the conformation of the integrin transmembrane helix and fail to activate integrin alone.Nevertheless,although it is widely accepted that kindlins and talins synergistically promote integrin activation,the underlying mechanism is unclear.Thus,the study of the force dissociation of the kindlin2/β3-tail complex and the conformation stabilization under different mechanical micro-environments should be of great significance for the further understanding of the structural basis of its synergistically activation of integrin.To reveal the molecular dynamics mechanism of interaction between kindlin2 andβ3-tail,we perform molecular dynamics(MD)simulations for this complex with different computing strategies interaction.In MD simulations,the available crystal structures of Kindlin-2/β3-tail complex(Protein Data Bank code 5XQ1)was downloaded from the PDB database.Two software packages,VMD for visualization and modeling and NAMD 2.13 for energy minimizations and MD simulations,were used here.The steadystate conformation of the complex was obtained from the equilibrium simulation.The dissociation event was observed by the constant velocity simulation,and the mechanical stability of the complex was observed by the constant force simulation.Our results showed that,during the equilibrium of the kindlin2-F3/β34ail complex,the residue MET612,LYS613 and TRP615 on the F3 domain of kindlin2 contributed to hydrogen-bonding with the corresponding residues onβ3 integrin.These bonds exhibit moderate or strong stability through steered molecular dynamics(SMD)simulation.During the constant velocity simulation,the complex exhibits a variety of unfolding pathways against tension applications,which are mainly distinguished by the disruption of hydrogen-bonds between the F3 domain a1/a2 helixes andβ1/β2 sheets.During the constant force simulation,the different phases of the composite force dissociation have different dissociation probabilities,which shows the biphasic force-dependent characteristics.And,the key residues in the pulling were recognized according not only to the number of interacting residue pairs,but also to their bond strength.Using molecular dynamics simulation,we showed the steady state of the kindlin2-F3/β3-tail complex under different tensile forces,and observe the dynamic process of molecular interaction.A possible underlying biophysical mechanism is that,the dissociation of Kindlin2-F3/β3-tail complex is biphasic force-dependent,and the conformations under different stretching states have different binding affinities.This study not only provides insights into the structural basis and mechanical regulation mechanisms of the kindlin/integrin interaction,in understanding in kindlin/integrin-related signaling in different cellular biological processes,but also provides new ideas for novel drug design and the treatment of related diseases.展开更多
In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one a...In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one and then the forces applied to it are analyzed.Secondly,the rigid-flexible coupling dynamic simulation for erection system is accomplished by use of the system simulation software,for example Pro/E,ADAMS,ANSYS,MATLAB/Simulink,etc.Finally,having the aid of simulation results,the kinetic and dynamic characteristics of the flexible bodies in erection system are analyzed.The simulation considering the erection system as a rigid-flexible coupling system can provide valuable results to the research of its kinetic,dynamic and vibrational characteristics.展开更多
The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's...The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.展开更多
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金Projects(51878190,51779031,51678170)supported by the National Natural Science Foundation of China。
文摘When underground cavities are subjected to explosive stress waves,a uniquely damaged zone may appear due to the combined effect of dynamic loading and static pre-load stress.In this study,a rate-dependent two-dimensional rock dynamic constitutive model was established to investigate the dynamic fractures of rocks under different static stress conditions.The effects of the loading rate and peak amplitude of the blasting wave under different confining pressures and the vertical compressive coefficient(K_(0))were considered.The numerical simulated results reproduced the initiation and further propagation of primary radial crack fractures,which were in agreement with the experimental results.The dynamic loading rate,peak amplitude,static vertical compressive coefficient(K_(0))and confining pressure affected the evolution of fractures around the borehole.The heterogeneity parameter(m)plays an important role in the evolution of fractures around the borehole.The crack propagation path became more discontinuous and rougher in a smallerheterogeneity parameter case.
基金supported by the National Natural Science Foundation of China ( 116272109, 11432006)
文摘Integrin activation,the transition from a low to a high affinity state,regulates the numerous cellular responses consequent to integrin engagement by extracellular matrix proteins.Kindlin proteins,play crucial roles in the integrin-signaling pathway by directly interacting with and activating integrins,which mediate the cell-extracellular matrix adhesion and signaling.As a widely distributed PTB domain protein and a major member of the kindlin family,kindlin2 interacts withβ3-tail,bridges talin-activated integrins to promote integrin aggregation,and enhances talin-induced integrin activation.Thus,kindlin2 is identified as a coactivator of integrins.Unlike talins,kindlin2 cannot directly alter the conformation of the integrin transmembrane helix and fail to activate integrin alone.Nevertheless,although it is widely accepted that kindlins and talins synergistically promote integrin activation,the underlying mechanism is unclear.Thus,the study of the force dissociation of the kindlin2/β3-tail complex and the conformation stabilization under different mechanical micro-environments should be of great significance for the further understanding of the structural basis of its synergistically activation of integrin.To reveal the molecular dynamics mechanism of interaction between kindlin2 andβ3-tail,we perform molecular dynamics(MD)simulations for this complex with different computing strategies interaction.In MD simulations,the available crystal structures of Kindlin-2/β3-tail complex(Protein Data Bank code 5XQ1)was downloaded from the PDB database.Two software packages,VMD for visualization and modeling and NAMD 2.13 for energy minimizations and MD simulations,were used here.The steadystate conformation of the complex was obtained from the equilibrium simulation.The dissociation event was observed by the constant velocity simulation,and the mechanical stability of the complex was observed by the constant force simulation.Our results showed that,during the equilibrium of the kindlin2-F3/β34ail complex,the residue MET612,LYS613 and TRP615 on the F3 domain of kindlin2 contributed to hydrogen-bonding with the corresponding residues onβ3 integrin.These bonds exhibit moderate or strong stability through steered molecular dynamics(SMD)simulation.During the constant velocity simulation,the complex exhibits a variety of unfolding pathways against tension applications,which are mainly distinguished by the disruption of hydrogen-bonds between the F3 domain a1/a2 helixes andβ1/β2 sheets.During the constant force simulation,the different phases of the composite force dissociation have different dissociation probabilities,which shows the biphasic force-dependent characteristics.And,the key residues in the pulling were recognized according not only to the number of interacting residue pairs,but also to their bond strength.Using molecular dynamics simulation,we showed the steady state of the kindlin2-F3/β3-tail complex under different tensile forces,and observe the dynamic process of molecular interaction.A possible underlying biophysical mechanism is that,the dissociation of Kindlin2-F3/β3-tail complex is biphasic force-dependent,and the conformations under different stretching states have different binding affinities.This study not only provides insights into the structural basis and mechanical regulation mechanisms of the kindlin/integrin interaction,in understanding in kindlin/integrin-related signaling in different cellular biological processes,but also provides new ideas for novel drug design and the treatment of related diseases.
文摘In order to study the dynamic characteristics of the missile erection system,it can be considered as a rigid-flexible coupling multi-body system.Firstly,the actual system is abstracted as an equal and simplified one and then the forces applied to it are analyzed.Secondly,the rigid-flexible coupling dynamic simulation for erection system is accomplished by use of the system simulation software,for example Pro/E,ADAMS,ANSYS,MATLAB/Simulink,etc.Finally,having the aid of simulation results,the kinetic and dynamic characteristics of the flexible bodies in erection system are analyzed.The simulation considering the erection system as a rigid-flexible coupling system can provide valuable results to the research of its kinetic,dynamic and vibrational characteristics.
基金Project(50575165) supported by the National Natural Science Foundation of ChinaProjects(2006AA04Z202, 2005AA2006-1) supported by the National High-Tech Research and Development Program of China+1 种基金Project(20813) supported by the Natural Science Foundation of Hubei Province, ChinaProject(20045006071-28) supported by the Youth Chenguang Project of Science and Technology of Wuhan City, China
文摘The rigid-flexible coupling dynamic modeling and simulation of an inspection robot were conducted to study the influences of the flexible obstructive working environment i.e. overhead transmission line on the robot's dynamic performance. First, considering the structure of the obstacles and symmetrical mechanism of the robot prototype, four basic subactions were abstracted to fulfill full-path kinematic tasks. Then, a multi-rigid-body dynamic model of the robot was built with Lagrange equation, whil^e a multi-flexible-body dynamic model of a span of lin~ was obtained by combining finite element method (FEM), modal synthesis method and Lagrange equation. The two subsystem models were coupled under rolling along no-obstacle segment and overcoming obstacle poses, and these simulations of three subactions along different spans of line were performed in ADMAS. The simulation results, including the coupling vibration parameters and driving moment of joint motors, show the dynamic performances of the robot along ftexibile obstructive working path: in flexible obstructive working environment, the robot can fulfill the preset motion goals; it responses slower in more flexible path; the fluctuation of robot as well as driving moment of the corresponding joint in startup and brake region is greater than that in rigid environment; the fluctuation amplitude increases with increasing working environment flexibility.