This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a rand...This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.展开更多
为解决可逆信息隐藏(reversible data hiding,RDH)容量受限的问题,提出了一种基于相邻均值差的可逆信息隐藏(neighboring mean difference reversible data hiding,NMDRDH)算法。相邻均值差(neighboring mean diffe-rence,NMD):计算两...为解决可逆信息隐藏(reversible data hiding,RDH)容量受限的问题,提出了一种基于相邻均值差的可逆信息隐藏(neighboring mean difference reversible data hiding,NMDRDH)算法。相邻均值差(neighboring mean diffe-rence,NMD):计算两个相邻数值的平均值与其中一个数值的差值。NMD将差值最小化,使数据更加集中。首先将图像进行分块,然后在分块上应用NMD生成差值直方图,最后通过平移差值直方图,利用峰值点来嵌入秘密信息。由于NMD使生成的差值直方图具有更多的峰值点,所以该方法可嵌入更多的秘密信息。实验结果表明,采用本算法,原始图像恢复率和秘密信息提取正确率均为100%;相比于经典差值直方图平移方法,本算法的嵌入容量提升了43.7%;本算法在保证高容量的同时,PSNR达到42 dB以上,确保了嵌入图像失真较小。展开更多
针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主...针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主题分布向量改进方法。与传统VSM分类方法相比,该方法降低了相似度计算维度,融合了一定语义特征。实验结果表明,与传统VSM分类方法相比,基于主题分布相似度方法的平均F1值提高了4.5%,基于LDA模型主题-词分布矩阵主题分布向量改进方法的平均F1值提高了5.2%,验证了以上方法的有效性。展开更多
提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻...提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间.展开更多
为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任...为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.12002246 and No.52178301)Knowledge Innovation Program of Wuhan(Grant No.2022010801020357)+2 种基金the Science Research Foundation of Wuhan Institute of Technology(Grant No.K2021030)2020 annual Open Fund of Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022)Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety(Grant No.2019KA03)。
文摘This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs,the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification,which is applicable for most structural reliability estimation problems.Moreover,the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements,which further validates its practicability.
文摘为解决可逆信息隐藏(reversible data hiding,RDH)容量受限的问题,提出了一种基于相邻均值差的可逆信息隐藏(neighboring mean difference reversible data hiding,NMDRDH)算法。相邻均值差(neighboring mean diffe-rence,NMD):计算两个相邻数值的平均值与其中一个数值的差值。NMD将差值最小化,使数据更加集中。首先将图像进行分块,然后在分块上应用NMD生成差值直方图,最后通过平移差值直方图,利用峰值点来嵌入秘密信息。由于NMD使生成的差值直方图具有更多的峰值点,所以该方法可嵌入更多的秘密信息。实验结果表明,采用本算法,原始图像恢复率和秘密信息提取正确率均为100%;相比于经典差值直方图平移方法,本算法的嵌入容量提升了43.7%;本算法在保证高容量的同时,PSNR达到42 dB以上,确保了嵌入图像失真较小。
文摘针对传统VSM(vector space model)在短文本分类中维数高、语义特征不明显的问题,提出基于LDA(latent Dirichlet allocation)模型主题分布相似度分类方法;针对短文本内容少、长度短、特征稀疏的问题,提出基于LDA模型主题-词分布矩阵的主题分布向量改进方法。与传统VSM分类方法相比,该方法降低了相似度计算维度,融合了一定语义特征。实验结果表明,与传统VSM分类方法相比,基于主题分布相似度方法的平均F1值提高了4.5%,基于LDA模型主题-词分布矩阵主题分布向量改进方法的平均F1值提高了5.2%,验证了以上方法的有效性。
文摘提出了一种快速的稀有类检测算法——CATION(rare category detection algorithm based on weightedboundary degree).通过使用加权边界度(weighted boundary degree,简称WBD)这一新的稀有类检测标准,该算法可利用反向k近邻的特性来寻找稀有类的边界点,并选取加权边界度最高的边界点询问其类别标签.实验结果表明,与现有方法相比,该算法避免了现有方法的局限性,大幅度地提高了发现数据集中各个类的效率,并有效地缩短了算法运行所需要的运行时间.
文摘为了改进现有的组反k最近邻查询算法的查询速度与准确度,提出了一种基于Voronoi图的组反k最近邻查询方法(group reverse k nearest neighbor guery method based on Voronoi diagram,V_GRk NN)。该方法获得的结果集是将这组查询点中任意一点作为kN N的数据点集合,在实际应用中可以用来评估一组查询对象的影响力。该方法的特点是首先对查询点集Q进行优化处理,降低查询点数量对查询效率的负面影响;接着对数据点集P进行约减,缩小查询搜索范围;然后根据基于Voronoi图的剪枝策略对候选集进行过滤;最后经过精炼获得GRk NN查询的结果集。该方法在数据集处理阶段很大程度上提高了查询速度,在过滤、精炼阶段利用Voronoi图的特性提高了查询的准确性。理论研究和实验表明,所提方法的效率明显优于可选的已有方法。