The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathe...The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.展开更多
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design...In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.展开更多
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金Projects(51409167,51139001,51179066)supported by the National Natural Science Foundation of ChinaProjects(201401022,201501036)supported by the Ministry of Water Resources Public Welfare Industry Research Special Fund,ChinaProjects(GG201532,GG201546)supported by the Scientific and Technological Research for Water Conservancy,Henan Province,China
文摘The structural system failure probability(SFP) is a valuable tool for evaluating the global safety level of concrete gravity dams.Traditional methods for estimating the failure probabilities are based on defined mathematical descriptions,namely,limit state functions of failure modes.Several problems are to be solved in the use of traditional methods for gravity dams.One is how to define the limit state function really reflecting the mechanical mechanism of the failure mode;another is how to understand the relationship among failure modes and enable the probability of the whole structure to be determined.Performing SFP analysis for a gravity dam system is a challenging task.This work proposes a novel nonlinear finite-element-based SFP analysis method for gravity dams.Firstly,reasonable nonlinear constitutive modes for dam concrete,concrete/rock interface and rock foundation are respectively introduced according to corresponding mechanical mechanisms.Meanwhile the response surface(RS) method is used to model limit state functions of main failure modes through the Monte Carlo(MC) simulation results of the dam-interface-foundation interaction finite element(FE) analysis.Secondly,a numerical SFP method is studied to compute the probabilities of several failure modes efficiently by simple matrix integration operations.Then,the nonlinear FE-based SFP analysis methodology for gravity dams considering correlated failure modes with the additional sensitivity analysis is proposed.Finally,a comprehensive computational platform for interfacing the proposed method with the open source FE code Code Aster is developed via a freely available MATLAB software tool(FERUM).This methodology is demonstrated by a case study of an existing gravity dam analysis,in which the dominant failure modes are identified,and the corresponding performance functions are established.Then,the dam failure probability of the structural system is obtained by the proposed method considering the correlation relationship of main failure modes on the basis of the mechanical mechanism analysis with the MC-FE simulations.
基金Project(U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Fund of Hunan Provincial Science and Technology Department,China
文摘In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.