In practice, gain perturbations of controllers which axe caused by actuator degradation and other reasons often lead to performance degradation. They are capable of violating the closed-loop stability. For a system wi...In practice, gain perturbations of controllers which axe caused by actuator degradation and other reasons often lead to performance degradation. They are capable of violating the closed-loop stability. For a system with constrained inputs, the actual controllers might exceed their limits because of gain perturbations. By the reason, this article considers the problem of resilient predictive control for a class of uncertain time-delay systems. By describing the gain perturbation as a time-varying uncertainty, the sufficient conditions to ensure the closedloop stability and the input constraints are derived. Additionally, an approach to design the resilient predictive controllers is presented in terms of LMI. Finally, the simulation shows that the proposed approach is very effective.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提...为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。展开更多
电动汽车(electric vehicle,EV)参与电网辅助调频,即利用电动汽车的“源—荷”特性来快速消除系统频率波动。然而,在保持系统性能条件下,如何保障大规模电动汽车辅助调频的经济性仍然是个挑战。为此,针对大规模EV聚合充电站辅助参与电...电动汽车(electric vehicle,EV)参与电网辅助调频,即利用电动汽车的“源—荷”特性来快速消除系统频率波动。然而,在保持系统性能条件下,如何保障大规模电动汽车辅助调频的经济性仍然是个挑战。为此,针对大规模EV聚合充电站辅助参与电网的负荷频率控制(load frequency control,LFC)问题,提出分布式经济模型预测控制(distributed economic model predictive control,DEMPC)方法,在经济模型预测控制的基础上,以单层结构控制双层分层,实现多个区域电网的分布式协同控制。通过经济成本函数的凸松弛实现控制器的优化,利用每个子系统控制器与相邻子系统的协同工作确保整个系统的控制性能,以合适的终端成本函数保证系统的渐进稳定性。仿真结果可以表明该方法的有效性和优越性。展开更多
文摘In practice, gain perturbations of controllers which axe caused by actuator degradation and other reasons often lead to performance degradation. They are capable of violating the closed-loop stability. For a system with constrained inputs, the actual controllers might exceed their limits because of gain perturbations. By the reason, this article considers the problem of resilient predictive control for a class of uncertain time-delay systems. By describing the gain perturbation as a time-varying uncertainty, the sufficient conditions to ensure the closedloop stability and the input constraints are derived. Additionally, an approach to design the resilient predictive controllers is presented in terms of LMI. Finally, the simulation shows that the proposed approach is very effective.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
文摘为保证全直流风电系统安全并网运行,系统直流电压稳定控制至关重要。全直流风电系统直流电压稳定控制采用比例积分(PI)控制时,PI参数较多且整定繁琐复杂,在非正常运行工况下动态响应速度相对较慢,控制精度不够高。针对以上问题,文章提出一种基于有限控制集模型预测控制(Finite Control Set-Model Predictive Control,FCS-MPC)原理对系统换流器桥臂晶体管开关状态进行控制的系统直流电压稳定控制策略。该策略结合机侧整流器及并网逆变器的电流预测模型,以换流器输出电流为控制变量构造代价函数,以代价函数为优化目标,为避免计算时延导致的控制延时,引入延时补偿提高控制准确度,并引入权重系数实现多目标优化,通过遍历计算产生最优开关组合信号触发换流器。在Matlab/Simulink中建立全直流风电系统的仿真模型,在不同工况下,对所提策略与传统PI控制进行对比仿真分析,仿真结果有效验证了所提控制策略的静态性能及动态性能。
文摘电动汽车(electric vehicle,EV)参与电网辅助调频,即利用电动汽车的“源—荷”特性来快速消除系统频率波动。然而,在保持系统性能条件下,如何保障大规模电动汽车辅助调频的经济性仍然是个挑战。为此,针对大规模EV聚合充电站辅助参与电网的负荷频率控制(load frequency control,LFC)问题,提出分布式经济模型预测控制(distributed economic model predictive control,DEMPC)方法,在经济模型预测控制的基础上,以单层结构控制双层分层,实现多个区域电网的分布式协同控制。通过经济成本函数的凸松弛实现控制器的优化,利用每个子系统控制器与相邻子系统的协同工作确保整个系统的控制性能,以合适的终端成本函数保证系统的渐进稳定性。仿真结果可以表明该方法的有效性和优越性。