针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特...针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。展开更多
为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、...为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、转换等预处理基础上,提出将多条流量样本转换为灰度图,并利用基于ResNet和双向LSTM融合的深度学习方法构建物联网入侵检测分类模型.对分类模型的网络结构、可复用性进行综合优化实验,得到最终优化模型,分类准确率达到96.77%,综合优化后的模型构建时间为39.85 s.与其他机器学习算法结果相比,该优化方法在分类准确率和效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型.展开更多
文摘针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。
文摘为提高物联网入侵检测模型的综合性能,将残差神经网络(Residual Networks,ResNet)与双向长短时记忆(Long-Short Term Memory,LSTM)网络融合,构建物联网入侵检测分类模型.针对大规模物联网流量快速批量处理问题,在对原始数据进行清洗、转换等预处理基础上,提出将多条流量样本转换为灰度图,并利用基于ResNet和双向LSTM融合的深度学习方法构建物联网入侵检测分类模型.对分类模型的网络结构、可复用性进行综合优化实验,得到最终优化模型,分类准确率达到96.77%,综合优化后的模型构建时间为39.85 s.与其他机器学习算法结果相比,该优化方法在分类准确率和效率两个方面取得了很好的效果,综合性能优于传统的入侵检测分类模型.