Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density pe...Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.展开更多
It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failu...It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.展开更多
文摘Horizontal wells are commonly used in bottom water reservoirs,which can increase contact area between wellbores and reservoirs.There are many completion methods used to control cresting,among which variable density perforation is an effective one.It is difficult to evaluate well productivity and to analyze inflow profiles of horizontal wells with quantities of unevenly distributed perforations,which are characterized by different parameters.In this paper,fluid flow in each wellbore perforation,as well as the reservoir,was analyzed.A comprehensive model,coupling the fluid flow in the reservoir and the wellbore pressure drawdown,was developed based on potential functions and solved using the numerical discrete method.Then,a bottom water cresting model was established on the basis of the piston-like displacement principle.Finally,bottom water cresting parameters and factors influencing inflow profile were analyzed.A more systematic optimization method was proposed by introducing the concept of cumulative free-water production,which could maintain a balance(or then a balance is achieved)between stabilizing oil production and controlling bottom water cresting.Results show that the inflow profile is affected by the perforation distribution.Wells with denser perforation density at the toe end and thinner density at the heel end may obtain low production,but the water breakthrough time is delayed.Taking cumulative free-water production as a parameter to evaluate perforation strategies is advisable in bottom water reservoirs.
基金the National Basic Research Program of China(No.2007CB209401) for its financial support
文摘It is very important to determine the extent of the fractured zone through which water can flow before coal mining under the water bodies.This paper deals with methods to obtain information about overburden rock failure and the development of the fractured zone while coal mining in Xin'an Coal Mine.The risk of water inrush in this mine is great because 40%of the mining area is under the Xiaolangdi reservoir.Numerical simulations combined with geophysical methods were used in this paper to obtain the development law of the fractured zone under different mining conditions.The comprehensive geophysical method described in this paper has been demonstrated to accurately predict the height of the water-flow fractured zone.Results from the new model, which created from the results of numerical simulations and field measurements,were successfully used for making decisions in the Xin'an Coal Mine when mining under the Xiaolangdi Reservoir.Industrial scale experiments at the number 11201,14141 and 14191 working faces were safely carried out.These achievements provide a successful background for the evaluation and application of coal mining under large reservoirs.