The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t...The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.展开更多
识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirecti...识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirectional encoder representations from transformers)和TENER(transformer encoder for NER)模型的领域命名实体识别模型。BERT-TENER模型通过预训练模型BERT获得字符的动态字向量;将字向量输入TENER模块中,基于注意力机制使得同样的字符拥有不同的学习过程,基于改进的Transformer模型进一步捕捉字符与字符之间的距离和方向信息,增强模型对不同长度、小类别文本内容的理解,并采用条件随机场模型获得每个字符对应的实体标签。在领域数据集上,BERT-TENER模型针对服装抽检领域的实体识别F_1达到92.45%,相较传统方法有效提升了命名实体识别率,并且在长文本以及非均衡的实体类别中也表现出较好的性能。展开更多
Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u...Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.展开更多
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small...Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.展开更多
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha...Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.展开更多
The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases b...The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.展开更多
Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although tr...Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.展开更多
Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based ...Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based trajectory clustering method for arrival aircraft via new proposed trajectory representation.The proposed method consists of four significant steps:representing the trajectories,grouping the trajectories based on the new representation,measuring the similarities between different trajectories through dynamic time warping(DTW)in each group,and clustering the trajectories based on k-means and densitybased spatial clustering of applications with noise(DBSCAN).We take the inbound trajectories toward Shanghai Pudong International Airport(ZSPD)to carry out the case studies.The corresponding results indicate that the proposed method could not only distinguish the particular flight patterns,but also improve the performance of flight time estimation.展开更多
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ...Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.展开更多
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs...Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.展开更多
The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern ch...The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.展开更多
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time...This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.展开更多
A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four step...A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.展开更多
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation,...To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.展开更多
基金National Natural Science Foundation of China(12161013)Research Projects of Guizhou University of Commerce in 2024。
文摘The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group.
文摘识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirectional encoder representations from transformers)和TENER(transformer encoder for NER)模型的领域命名实体识别模型。BERT-TENER模型通过预训练模型BERT获得字符的动态字向量;将字向量输入TENER模块中,基于注意力机制使得同样的字符拥有不同的学习过程,基于改进的Transformer模型进一步捕捉字符与字符之间的距离和方向信息,增强模型对不同长度、小类别文本内容的理解,并采用条件随机场模型获得每个字符对应的实体标签。在领域数据集上,BERT-TENER模型针对服装抽检领域的实体识别F_1达到92.45%,相较传统方法有效提升了命名实体识别率,并且在长文本以及非均衡的实体类别中也表现出较好的性能。
基金supported by the National Natural Science Foundation of China (62101359)Sichuan University and Yibin Municipal People’s Government University and City Strategic Cooperation Special Fund Project (2020CDYB-29)+1 种基金the Science and Technology Plan Transfer Payment Project of Sichuan Province (2021ZYSF007)the Key Research and Development Program of Science and Technology Department of Sichuan Province (2020YFS0575,2021KJT0012-2 021YFS-0067)。
文摘Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier.
基金supported by the Inter-governmental Science and Technology Cooperation Project (2009DFA12870)
文摘Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results.
基金Projects(11661069,61763041) supported by the National Natural Science Foundation of ChinaProject(IRT_15R40) supported by Changjiang Scholars and Innovative Research Team in University,ChinaProject(2017TS045) supported by the Fundamental Research Funds for the Central Universities,China
文摘Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches.
基金supported by the National Research Foundation in Korea through contract N-12-NM-IR05
文摘The parametric temporal data model captures a real world entity in a single tuple, which reduces query language complexity. Such a data model, however, is difficult to be implemented on top of conventional databases because of its unfixed attribute sizes. XML is a matured technology and can be an elegant solution for such challenge. Representing data in XML trigger a question about storage efficiency. The goal of this work is to provide a straightforward answer to such a question. To this end, we compare three different storage models for the parametric temporal data model and show that XML is not worse than any other approaches. Furthermore, XML outperforms the other storages under certain conditions. Therefore, our simulation results provide a positive indication that the myth about XML is not true in the parametric temporal data model.
基金Project(2014AA06A602)supported by the National High-Tech Research and Development Program of ChinaProjects(41404111,41304098)supported by the National Natural Science Foundation of ChinaProject(2015JJ3088)supported by the Natural Science Foundation of Hunan Province,China
文摘Power-line interference is one of the most common noises in magnetotelluric(MT)data.It usually causes distortion at the fundamental frequency and its odd harmonics,and may also affect other frequency bands.Although trap circuits are designed to suppress such noise in most of the modern acquisition devices,strong interferences are still found in MT data,and the power-line interference will fluctuate with the changing of load current.The fixed trap circuits often fail to deal with it.This paper proposes an alternative scheme for power-line interference removal based on frequency-domain sparse decomposition.Firstly,the fast Fourier transform of the acquired MT signal is performed.Subsequently,a redundant dictionary is designed to match with the power-line interference which is insensitive to the useful signal.Power-line interference is separated by using the dictionary and a signal reconstruction algorithm of compressive sensing called improved orthogonal matching pursuit(IOMP).Finally,the frequency domain data are switched back to the time domain by the inverse fast Fourier transform.Simulation experiments and real data examples from Lu-Zong ore district illustrate that this scheme can effectively suppress the power-line interference and significantly improve data quality.Compared with time domain sparse decomposition,this scheme takes less time consumption and acquires better results.
基金supported by the Joint Fund of National Natural Science Foundation of China and Civil Aviation Administration of China(U1933117)the Open Fund for Graduate Innovation Base(Laboratory)of Nanjing University of Aeronautics and Astronautics(kfjj20190709).
文摘Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based trajectory clustering method for arrival aircraft via new proposed trajectory representation.The proposed method consists of four significant steps:representing the trajectories,grouping the trajectories based on the new representation,measuring the similarities between different trajectories through dynamic time warping(DTW)in each group,and clustering the trajectories based on k-means and densitybased spatial clustering of applications with noise(DBSCAN).We take the inbound trajectories toward Shanghai Pudong International Airport(ZSPD)to carry out the case studies.The corresponding results indicate that the proposed method could not only distinguish the particular flight patterns,but also improve the performance of flight time estimation.
基金the National Natural Science Foundation of China (60672061)
文摘Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.
基金supported by the National Key Research and Development Program of China under grant 2016YFC0802904National Natural Science Foundation of China under grant61671470the Postdoctoral Science Foundation Funded Project of China under grant 2017M623423。
文摘Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved.
基金Projects(51405381,51674188)supported by the National Natural Science Foundation of China
文摘The all traditional electrical resistance tomography (ERT) sensors have a static structure, which cannot satisfy the intelligent requirements for adaptive optimization to ERT sensors that is subject to flow pattern changes during the real-time detection of two-phase flow. In view of this problem, an adaptive ERT sensor with a dynamic structure is proposed. The electrodes of the ERT sensor are arranged in an array structure, the flow pattern recognition technique is introduced into the ERT sensor design and accordingly an ERT flow pattern recognition method based on signal sparsity is proposed. This method uses the sparse representation of the signal to express the sampling voltage of the ERT system as a sparse combination and find its sparse solution to achieve the classification of different flow patterns. With the introduction of flow identification information, the sensor has an intelligent function of adaptively and dynamically adapting the sensor structure according to the real-time flow pattern change. The experimental results show that the sensor can automatically identify four typical flow patterns: core flow, bubble flow, laminar flow and circulation flow with recognition rates of 91%, 93%, 90% and 88% respectively. For different flow patterns, the dynamically optimized sensor can significantly improve the quality of ERT image reconstruction.
基金supported by the National Natural Science Foundation of China(61072120)
文摘This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation.
基金supported by the National Basic Research Program of China (973 Program) (2010CB734104)
文摘A novel group decision-making (GDM) method based on intuitionistic fuzzy sets (IFSs) is developed to evaluate the ergonomics of aircraft cockpit display and control system (ACDCS). The GDM process with four steps is discussed. Firstly, approaches are proposed to transform four types of common judgement representations into a unified expression by the form of the IFS, and the features of unifications are analyzed. Then, the aggregation operator called the IFSs weighted averaging (IFSWA) operator is taken to synthesize decision-makers’ (DMs’) preferences by the form of the IFS. In this operator, the DM’s reliability weights factors are determined based on the distance measure between their preferences. Finally, an improved score function is used to rank alternatives and to get the best one. An illustrative example proves the proposed method is effective to valuate the ergonomics of the ACDCS.
文摘To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL.