期刊文献+
共找到65篇文章
< 1 2 4 >
每页显示 20 50 100
Localization in modified polar representation: hybrid measurements and closed-form solution 被引量:2
1
作者 CONG Xunchao SUN Yimao +2 位作者 YANG Yanbing ZHANG Lei CHEN Liangyin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期575-588,共14页
Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) u... Classical localization methods use Cartesian or Polar coordinates, which require a priori range information to determine whether to estimate position or to only find bearings. The modified polar representation (MPR) unifies near-field and farfield models, alleviating the thresholding effect. Current localization methods in MPR based on the angle of arrival (AOA) and time difference of arrival (TDOA) measurements resort to semidefinite relaxation (SDR) and Gauss-Newton iteration, which are computationally complex and face the possible diverge problem. This paper formulates a pseudo linear equation between the measurements and the unknown MPR position,which leads to a closed-form solution for the hybrid TDOA-AOA localization problem, namely hybrid constrained optimization(HCO). HCO attains Cramér-Rao bound (CRB)-level accuracy for mild Gaussian noise. Compared with the existing closed-form solutions for the hybrid TDOA-AOA case, HCO provides comparable performance to the hybrid generalized trust region subproblem (HGTRS) solution and is better than the hybrid successive unconstrained minimization (HSUM) solution in large noise region. Its computational complexity is lower than that of HGTRS. Simulations validate the performance of HCO achieves the CRB that the maximum likelihood estimator (MLE) attains if the noise is small, but the MLE deviates from CRB earlier. 展开更多
关键词 LOCALIZATION modified polar representation time difference of arrival(TDOA) angle of arrival(AOA) closed-form solution
在线阅读 下载PDF
Tri-party deep network representation learning using inductive matrix completion 被引量:4
2
作者 YE Zhong-lin ZHAO Hai-xing +2 位作者 ZHANG Ke ZHU Yu XIAO Yu-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第10期2746-2758,共13页
Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all cha... Most existing network representation learning algorithms focus on network structures for learning.However,network structure is only one kind of view and feature for various networks,and it cannot fully reflect all characteristics of networks.In fact,network vertices usually contain rich text information,which can be well utilized to learn text-enhanced network representations.Meanwhile,Matrix-Forest Index(MFI)has shown its high effectiveness and stability in link prediction tasks compared with other algorithms of link prediction.Both MFI and Inductive Matrix Completion(IMC)are not well applied with algorithmic frameworks of typical representation learning methods.Therefore,we proposed a novel semi-supervised algorithm,tri-party deep network representation learning using inductive matrix completion(TDNR).Based on inductive matrix completion algorithm,TDNR incorporates text features,the link certainty degrees of existing edges and the future link probabilities of non-existing edges into network representations.The experimental results demonstrated that TFNR outperforms other baselines on three real-world datasets.The visualizations of TDNR show that proposed algorithm is more discriminative than other unsupervised approaches. 展开更多
关键词 network representation network embedding representation learning matrix-forestindex inductive matrix completion
在线阅读 下载PDF
Infrared small target detection using sparse representation 被引量:12
3
作者 Jiajia Zhao ZhengyuanTang +1 位作者 Jie Yang Erqi Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第6期897-904,共8页
Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small... Sparse representation has recently been proved to be a powerful tool in image processing and object recognition.This paper proposes a novel small target detection algorithm based on this technique.By modelling a small target as a linear combination of certain target samples and then solving a sparse 0-minimization problem,the proposed apporach successfully improves and optimizes the small target representation with innovation.Furthermore,the sparsity concentration index(SCI) is creatively employed to evaluate the coefficients of each block representation and simpfy target identification.In the detection frame,target samples are firstly generated to constitute an over-complete dictionary matrix using Gaussian intensity model(GIM),and then sparse model solvers are applied to finding sparse representation for each sub-image block.Finally,SCI lexicographical evalution of the entire image incorparates with a simple threshold locate target position.The effectiveness and robustness of the proposed algorithm are demonstrated by the exprimental results. 展开更多
关键词 target detection sparse representation orthogonal matching pursuit(OMP).
在线阅读 下载PDF
Trajectory clustering for arrival aircraft via new trajectory representation 被引量:7
4
作者 GUI Xuhao ZHANG Junfeng PENG Zihan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期473-486,共14页
Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based ... Trajectory clustering can identify the flight patterns of the air traffic,which in turn contributes to the airspace planning,air traffic flow management,and flight time estimation.This paper presents a semantic-based trajectory clustering method for arrival aircraft via new proposed trajectory representation.The proposed method consists of four significant steps:representing the trajectories,grouping the trajectories based on the new representation,measuring the similarities between different trajectories through dynamic time warping(DTW)in each group,and clustering the trajectories based on k-means and densitybased spatial clustering of applications with noise(DBSCAN).We take the inbound trajectories toward Shanghai Pudong International Airport(ZSPD)to carry out the case studies.The corresponding results indicate that the proposed method could not only distinguish the particular flight patterns,but also improve the performance of flight time estimation. 展开更多
关键词 air traffic management trajectory clustering trajectory representation flight pattern
在线阅读 下载PDF
Fast-armored target detection based on multi-scale representation and guided anchor 被引量:6
5
作者 Fan-jie Meng Xin-qing Wang +2 位作者 Fa-ming Shao Dong Wang Xiao-dong Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期922-932,共11页
Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firs... Focused on the task of fast and accurate armored target detection in ground battlefield,a detection method based on multi-scale representation network(MS-RN) and shape-fixed Guided Anchor(SF-GA)scheme is proposed.Firstly,considering the large-scale variation and camouflage of armored target,a new MS-RN integrating contextual information in battlefield environment is designed.The MS-RN extracts deep features from templates with different scales and strengthens the detection ability of small targets.Armored targets of different sizes are detected on different representation features.Secondly,aiming at the accuracy and real-time detection requirements,improved shape-fixed Guided Anchor is used on feature maps of different scales to recommend regions of interests(ROIs).Different from sliding or random anchor,the SF-GA can filter out 80% of the regions while still improving the recall.A special detection dataset for armored target,named Armored Target Dataset(ARTD),is constructed,based on which the comparable experiments with state-of-art detection methods are conducted.Experimental results show that the proposed method achieves outstanding performance in detection accuracy and efficiency,especially when small armored targets are involved. 展开更多
关键词 RED image RPN Fast-armored target detection based on multi-scale representation and guided anchor
在线阅读 下载PDF
Underdetermined DOA estimation and blind separation of non-disjoint sources in time-frequency domain based on sparse representation method 被引量:9
6
作者 Xiang Wang Zhitao Huang Yiyu Zhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期17-25,共9页
This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time... This paper deals with the blind separation of nonstation-ary sources and direction-of-arrival (DOA) estimation in the under-determined case, when there are more sources than sensors. We assume the sources to be time-frequency (TF) disjoint to a certain extent. In particular, the number of sources presented at any TF neighborhood is strictly less than that of sensors. We can identify the real number of active sources and achieve separation in any TF neighborhood by the sparse representation method. Compared with the subspace-based algorithm under the same sparseness assumption, which suffers from the extra noise effect since it can-not estimate the true number of active sources, the proposed algorithm can estimate the number of active sources and their cor-responding TF values in any TF neighborhood simultaneously. An-other contribution of this paper is a new estimation procedure for the DOA of sources in the underdetermined case, which combines the TF sparseness of sources and the clustering technique. Sim-ulation results demonstrate the validity and high performance of the proposed algorithm in both blind source separation (BSS) and DOA estimation. 展开更多
关键词 underdetermined blind source separation (UBSS)time-frequency (TF) domain sparse representation methoditerative adaptive approach direction-of-arrival (DOA) estimationclustering validation.
在线阅读 下载PDF
Research on system-of-systems combat simulation model formal specification and representation 被引量:3
7
作者 Liu Chen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期901-909,共9页
To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation,... To makesystem-of-systems combat simulation models easy to be developed and reused, simulation model formal specification and representation are researched. According to the view of system-of-systems combat simulation, and based on DEVS, the simulation model's fundamental formalisms are explored. It includes entity model, system-of-systems model and experiment model. It also presents rigorous formal specification. XML data exchange standard is combined to design the XML based language, SCSL, to support simulation model representation. The corresponding relationship between SCSL and simulation model formalism is discussed and the syntax and semantics of elements in SCSL are detailed. Based on simulation model formal specification, the abstract simulation algorithm is given and SCSL virtual machine, which is capable of automatically interpreting and executing simulation model represented by SCSL, is designed. Finally an application case is presented, which can show the validation of the theory and verification of SCSL. 展开更多
关键词 simulation model formalism simulation model representation system-of-systems combat simulation language simulation virtual machine.
在线阅读 下载PDF
Single color image super-resolution using sparse representation and color constraint 被引量:2
8
作者 XU Zhigang MA Qiang YUAN Feixiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第2期266-271,共6页
Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent... Color image super-resolution reconstruction based on the sparse representation model usually adopts the regularization norm(e.g.,L1 or L2).These methods have limited ability to keep image texture detail to some extent and are easy to cause the problem of blurring details and color artifacts in color reconstructed images.This paper presents a color super-resolution reconstruction method combining the L2/3 sparse regularization model with color channel constraints.The method converts the low-resolution color image from RGB to YCbCr.The L2/3 sparse regularization model is designed to reconstruct the brightness channel of the input low-resolution color image.Then the color channel-constraint method is adopted to remove artifacts of the reconstructed highresolution image.The method not only ensures the reconstruction quality of the color image details,but also improves the removal ability of color artifacts.The experimental results on natural images validate that our method has improved both subjective and objective evaluation. 展开更多
关键词 COLOR image sparse representation SUPER-RESOLUTION L2/3 REGULARIZATION NORM COLOR channel CONSTRAINT
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
9
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
Pre-detection and dual-dictionary sparse representation based face recognition algorithm in non-sufficient training samples 被引量:2
10
作者 ZHAO Jian ZHANG Chao +3 位作者 ZHANG Shunli LU Tingting SU Weiwen JIA Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第1期196-202,共7页
Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and pos... Face recognition based on few training samples is a challenging task. In daily applications, sufficient training samples may not be obtained and most of the gained training samples are in various illuminations and poses. Non-sufficient training samples could not effectively express various facial conditions, so the improvement of the face recognition rate under the non-sufficient training samples condition becomes a laborious mission. In our work, the facial pose pre-recognition(FPPR) model and the dualdictionary sparse representation classification(DD-SRC) are proposed for face recognition. The FPPR model is based on the facial geometric characteristic and machine learning, dividing a testing sample into full-face and profile. Different poses in a single dictionary are influenced by each other, which leads to a low face recognition rate. The DD-SRC contains two dictionaries, full-face dictionary and profile dictionary, and is able to reduce the interference. After FPPR, the sample is processed by the DD-SRC to find the most similar one in training samples. The experimental results show the performance of the proposed algorithm on olivetti research laboratory(ORL) and face recognition technology(FERET) databases, and also reflect comparisons with SRC, linear regression classification(LRC), and two-phase test sample sparse representation(TPTSSR). 展开更多
关键词 face recognition facial pose pre-recognition(FPPR) dual-dictionary sparse representation method machine learning
在线阅读 下载PDF
High-resolution digital beamforming of UWB signals based on Carathéodory representation for delay compensation and array extrapolation 被引量:2
11
作者 DU Qiang SONG Yaoliang +1 位作者 JI Chenhe AHMAD Zeeshan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第5期918-926,共9页
To realize high-resolution digital beamforming(DBF)of ultra-wideband(UWB) signals, we propose a DBF method based on Carath ′eodory representation for delay compensation and array extrapolation. Delay compensation by ... To realize high-resolution digital beamforming(DBF)of ultra-wideband(UWB) signals, we propose a DBF method based on Carath ′eodory representation for delay compensation and array extrapolation. Delay compensation by Carath ′eodory representation could achieve high interpolation accuracy while using the single channel sampling technique. Array extrapolation by Carath ′eodory representation reformulates and extends each snapshot, consequently extends the aperture of the original uniform linear array(ULA) by several times and provides a better realtime performance than the existing aperture extrapolation utilizing vector extrapolation based on the two dimensional autoregressive(2-D AR) model. The UWB linear frequency modulated(LFM) signal is used for simulation analysis. Simulation results demonstrate that the proposed method is featured by a much higher spatial resolution than traditional DBF methods and lower sidelobes than using Lagrange fractional filters. 展开更多
关键词 BEAMFORMING ultra-wideband(UWB) array extrapolation Carathéodory representation fractional delay
在线阅读 下载PDF
Reconstruction of time series with missing value using 2D representation-based denoising autoencoder 被引量:2
12
作者 TAO Huamin DENG Qiuqun XIAO Shanzhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第6期1087-1096,共10页
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t... Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system. 展开更多
关键词 time series missing value 2D representation denoising autoencoder(DAE) RECONSTRUCTION
在线阅读 下载PDF
Local sparse representation for astronomical image denoising
13
作者 杨阿锋 鲁敏 +1 位作者 滕书华 孙即祥 《Journal of Central South University》 SCIE EI CAS 2013年第10期2720-2727,共8页
Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas ... Motivated by local coordinate coding(LCC) theory in nonlinear manifold learning, a new image representation model called local sparse representation(LSR) for astronomical image denoising was proposed. Borrowing ideas from surrogate function and applying the iterative shrinkage-thresholding algorithm(ISTA), an iterative shrinkage operator for LSR was derived. Meanwhile, a fast approximated LSR method by first performing a K-nearest-neighbor search and then solving a l1optimization problem was presented under the guarantee of denoising performance. In addition, the LSR model and adaptive dictionary learning were incorporated into a unified optimization framework, which explicitly established the inner connection of them. Such processing allows us to simultaneously update sparse coding vectors and the dictionary by alternating optimization method. The experimental results show that the proposed method is superior to the traditional denoising method and reaches state-of-the-art performance on astronomical image. 展开更多
关键词 astronomical image DENOISING LOCAL SPARSE representation(LSR) DICTIONARY learning ALTERNATING optimization
在线阅读 下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
14
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
在线阅读 下载PDF
Modeling of unsupervised knowledge graph of events based on mutual information among neighbor domains and sparse representation
15
作者 Jing-Tao Sun Jing-Ming Li Qiu-Yu Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第12期2150-2159,共10页
Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor do... Text event mining,as an indispensable method of text mining processing,has attracted the extensive attention of researchers.A modeling method for knowledge graph of events based on mutual information among neighbor domains and sparse representation is proposed in this paper,i.e.UKGE-MS.Specifically,UKGE-MS can improve the existing text mining technology's ability of understanding and discovering high-dimensional unmarked information,and solves the problems of traditional unsupervised feature selection methods,which only focus on selecting features from a global perspective and ignoring the impact of local connection of samples.Firstly,considering the influence of local information of samples in feature correlation evaluation,a feature clustering algorithm based on average neighborhood mutual information is proposed,and the feature clusters with certain event correlation are obtained;Secondly,an unsupervised feature selection method based on the high-order correlation of multi-dimensional statistical data is designed by combining the dimension reduction advantage of local linear embedding algorithm and the feature selection ability of sparse representation,so as to enhance the generalization ability of the selected feature items.Finally,the events knowledge graph is constructed by means of sparse representation and l1 norm.Extensive experiments are carried out on five real datasets and synthetic datasets,and the UKGE-MS are compared with five corresponding algorithms.The experimental results show that UKGE-MS is better than the traditional method in event clustering and feature selection,and has some advantages over other methods in text event recognition and discovery. 展开更多
关键词 Text event mining Knowledge graph of events Mutual information among neighbor domains Sparse representation
在线阅读 下载PDF
A multi-source image fusion algorithm based on gradient regularized convolution sparse representation
16
作者 WANG Jian QIN Chunxia +2 位作者 ZHANG Xiufei YANG Ke REN Ping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期447-459,共13页
Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational com... Image fusion based on the sparse representation(SR)has become the primary research direction of the transform domain method.However,the SR-based image fusion algorithm has the characteristics of high computational complexity and neglecting the local features of an image,resulting in limited image detail retention and a high registration misalignment sensitivity.In order to overcome these shortcomings and the noise existing in the image of the fusion process,this paper proposes a new signal decomposition model,namely the multi-source image fusion algorithm of the gradient regularization convolution SR(CSR).The main innovation of this work is using the sparse optimization function to perform two-scale decomposition of the source image to obtain high-frequency components and low-frequency components.The sparse coefficient is obtained by the gradient regularization CSR model,and the sparse coefficient is taken as the maximum value to get the optimal high frequency component of the fused image.The best low frequency component is obtained by using the fusion strategy of the extreme or the average value.The final fused image is obtained by adding two optimal components.Experimental results demonstrate that this method greatly improves the ability to maintain image details and reduces image registration sensitivity. 展开更多
关键词 gradient regularization convolution sparse representation(CSR) image fusion
在线阅读 下载PDF
Deformations and extensions of modified λ-differential Lie-Yamaguti algebras
17
作者 TENG Wen PAN Yuewei 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第4期115-127,共13页
The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce t... The modifiedλ-differential Lie-Yamaguti algebras are considered,in which a modifiedλ-differential Lie-Yamaguti algebra consisting of a Lie-Yamaguti algebra and a modifiedλ-differential operator.First we introduce the representation of modifiedλ-differential Lie-Yamaguti algebras.Furthermore,we establish the cohomology of a modifiedλ-differential Lie-Yamaguti algebra with coefficients in a representation.Finally,we investigate the one-parameter formal deformations and Abelian extensions of modifiedλ-differential Lie-Yamaguti algebras using the second cohomology group. 展开更多
关键词 Lie-Yamaguti algebra modifiedλ-differential operator representation and cohomology one-parameter formal deformation Abelian extension
在线阅读 下载PDF
从表征到生成:在线课堂生成性取向再议 被引量:4
18
作者 赵丽 刘寅生 《电化教育研究》 CSSCI 北大核心 2024年第1期92-99,共8页
在线课堂情境中,表征主义认识论、知识观下的“离身”认知愈演愈烈,“课堂空间在场感”的消弭在淡化知识产生情境的过程中无形地对“预成性”教学起到了强化和塑造的作用,进而涌现了知识与知识产生情境的分离、知识与知识产生过程的割... 在线课堂情境中,表征主义认识论、知识观下的“离身”认知愈演愈烈,“课堂空间在场感”的消弭在淡化知识产生情境的过程中无形地对“预成性”教学起到了强化和塑造的作用,进而涌现了知识与知识产生情境的分离、知识与知识产生过程的割裂的教育症结。面对在线课堂的表征症结,从生成论哲学转变视角,厘清身体与认知表征的实质,重新审视身体在教育和教学中的价值和意义,已然成为探索课堂生成与知识建构的新路径。具身技术作为离身认知环境向具身认知学习环境转变的纽带,既推动着知识产生情境的立体延伸,也维持着知识产生过程的动态循环,更是“用生成之名”来超越知识表征论的局限、混淆,切实促进学习者心智、身体与环境三者之间的具身交互。以具身认知为科学支撑的设计实践也将赋予在线课堂一种新的生成方式——技术性生成,从而实现在线课堂的生成性转向。 展开更多
关键词 在线课堂 表征主义 生成论 具身认知 具身技术
在线阅读 下载PDF
基于BERT-TENER的服装质量抽检通告命名实体识别
19
作者 陈进东 胡超 +1 位作者 郝凌霄 曹丽娜 《科学技术与工程》 北大核心 2024年第34期14754-14764,共11页
识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirecti... 识别服装质量抽检通告中的实体信息,对于评估不同区域的服装质量状况以及制定宏观政策具有重要意义。针对质量抽检通告命名实体识别存在的长文本序列信息丢失、小类样本特征学习不全等问题,以注意力机制为核心,提出了基于BERT(bidirectional encoder representations from transformers)和TENER(transformer encoder for NER)模型的领域命名实体识别模型。BERT-TENER模型通过预训练模型BERT获得字符的动态字向量;将字向量输入TENER模块中,基于注意力机制使得同样的字符拥有不同的学习过程,基于改进的Transformer模型进一步捕捉字符与字符之间的距离和方向信息,增强模型对不同长度、小类别文本内容的理解,并采用条件随机场模型获得每个字符对应的实体标签。在领域数据集上,BERT-TENER模型针对服装抽检领域的实体识别F_1达到92.45%,相较传统方法有效提升了命名实体识别率,并且在长文本以及非均衡的实体类别中也表现出较好的性能。 展开更多
关键词 命名实体识别 服装质量抽检通告 BERT(Bidirectional encoder representations from transformers) TENER(transformer encoder for NER)
在线阅读 下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
20
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部