期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
基于无人机影像的冬小麦株高提取与LAI估测模型构建 被引量:1
1
作者 夏积德 牟湘宁 +4 位作者 张鑫 张怡宁 梁琼丹 张青峰 王稳江 《陕西农业科学》 2024年第6期77-84,共8页
株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株... 株高和叶面积指数(Leaf Area Index,LAI)反映着作物的生长发育状况。为了探究基于无人机可见光遥感提取冬小麦株高的可靠性,以及利用株高和可见光植被指数估算LAI的精度,本文获取了拔节期、抽穗期、灌浆期的无人机影像,提取了冬小麦株高与可见光植被指数,使用逐步回归、偏最小二乘、随机森林、人工神经网络四种方法建立LAI估测模型,并对株高提取及LAI估测情况进行精度评价。结果显示:(1)株高提取值Hc与实测值Hd高度拟合(R^(2)=0.894,RMSE=6.695,NRMSE=9.63%),株高提取效果好;(2)与仅用可见光植被指数相比,基于株高与可见光植被指数构建的LAI估测模型精度更高,且随机森林为最优建模方法,当其决策树个数为50时模型估测效果最好(R^(2)=0.809,RMSE=0.497,NRMSE=13.85%,RPD=2.336)。利用无人机可见光遥感方法,高效、准确、无损地实现冬小麦株高及LAI提取估测可行性较高,该研究结果可为农情遥感监测提供参考。 展开更多
关键词 无人机可见光遥感 冬小麦 株高 叶面积指数 估测模型
在线阅读 下载PDF
基于无人机多光谱遥感的玉米LAI监测研究 被引量:2
2
作者 陈盛德 陈一钢 +4 位作者 徐小杰 刘俊宇 郭健洲 胡诗云 兰玉彬 《华南农业大学学报》 CAS CSCD 北大核心 2024年第4期608-617,共10页
[目的]探究更高效估测玉米LAI的无人机多光谱遥感监测模型,实现对玉米叶面积指数(Leaf area index,LAI)的快速预测估算。[方法]以全生长周期的玉米植株为研究对象,通过多光谱遥感无人机获取玉米植株影像并实地采集玉米LAI,利用多光谱信... [目的]探究更高效估测玉米LAI的无人机多光谱遥感监测模型,实现对玉米叶面积指数(Leaf area index,LAI)的快速预测估算。[方法]以全生长周期的玉米植株为研究对象,通过多光谱遥感无人机获取玉米植株影像并实地采集玉米LAI,利用多光谱信息研究植被指数与玉米LAI之间的定量关系,并选择相关的植被指数;分别使用多元线性逐步回归、支持向量机回归算法(Support vector machine regression,SVM)、随机森林回归算法(Random forest regression,RF)和基于鲸鱼算法(Whale optimization algorithm,WOA)优化的随机森林算法(WOA-RF)构建玉米LAI预测模型,通过分析对比,选择最优预测模型。[结果]筛选出的植被指数NDVI、NDRE、EVI、CIG与LAI呈极显著相关(P<0.01),构建了多元线性回归模型、SVM模型、RF模型和WOARF模型的预测模型,R2分别为0.873 2、0.878 0、0.917 7和0.940 8,RMSE分别为0.277 5、0.236 5、0.209 0和0.128 7。[结论]基于WOA-RF的玉米LAI预测模型的预测精度能够满足玉米生产的需要,对玉米生长期间的种植管理具有指导意义。 展开更多
关键词 无人机(UAV) 遥感 多光谱 玉米 叶面积指数(lai) 监测
在线阅读 下载PDF
基于LAI时间序列重构数据的冬小麦物候监测 被引量:20
3
作者 刘峻明 李曼曼 +1 位作者 王鹏新 黄健熙 《农业工程学报》 EI CAS CSCD 北大核心 2013年第19期120-129,共10页
农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间... 农作物物候信息对农作物长势监测和估产具有重要意义。该文以河北省中南部冬小麦为研究对象,以叶面积指数(LAI,leaf area index)为同化量,采用重采样粒子滤波算法同化WOFOST(world food studies)作物生长模型和遥感观测LAI,重构LAI时间序列数据,基于重构数据提取冬小麦返青期、抽穗期和成熟期等关键物候期。重构结果表明,重构的LAI具有良好的时间连续性和空间连续性,可减缓WOFOST作物模型LAI变化剧烈程度,峰值出现时间与遥感LAI曲线基本同步,且可一定程度上解决遥感观测LAI数值整体偏低和数据缺失的问题。物候期监测结果表明,在空间分布上与冬小麦实际生长状况基本相符,时间上也较为合理,但因在返青期存在LAI高初始值、成熟期存在LAI下限不确定性等问题致使在具体日期存在偏差。 展开更多
关键词 遥感 监测 数据处理 物候 叶面积指数 重采样粒子滤波 冬小麦
在线阅读 下载PDF
三种回归分析方法在Hyperion影像LAI反演中的比较 被引量:15
4
作者 孙华 鞠洪波 +2 位作者 张怀清 林辉 凌成星 《生态学报》 CAS CSCD 北大核心 2012年第24期7781-7790,共10页
借助GPS进行地面精确定位,利用LAI-2000冠层分析仪在攸县黄丰桥林场开展130个样地(60m×60m)的叶面积指数(Leaf Area Index,LAI)测量。采用FLAASH模块对Hyperion数据进行大气校正并与地面同步冠层观测数据进行拟合,通过研究地面实测... 借助GPS进行地面精确定位,利用LAI-2000冠层分析仪在攸县黄丰桥林场开展130个样地(60m×60m)的叶面积指数(Leaf Area Index,LAI)测量。采用FLAASH模块对Hyperion数据进行大气校正并与地面同步冠层观测数据进行拟合,通过研究地面实测LAI与Hyperion影像波段及其衍生的系列植被指数(NDVI、RVI等)的相关性,筛选出估算叶面积指数的植被指数因子。应用曲线估计、逐步回归及偏最小二乘三种回归分析技术分别建立叶面积指数的最优估算模型。结果表明:参与建模的因子中,比值植被指数(RVI)与LAI的相关性最大,敏感性最高,其次是SARVI0.1,NDVI705,NDVI,SARVI0.1,SARVI0.25;曲线估计、逐步回归分析和偏最小二乘回归三种分析方法所建的6个回归模型中,偏最小二乘回归的拟合效果最好,预测值与实测值的决定系数R2为0.84、曲线估计的拟合效果最低,预测值与实测值的决定系数R2为0.64;建模精度分析表明,选用5—6个自变量因子进行LAI建模是可靠的,以6个植被因子建立的偏最小二乘回归模型预测精度最高。 展开更多
关键词 遥感反演 叶面积指数 偏最小二乘回归 植被指数 黄丰桥林场
在线阅读 下载PDF
利用交叉验证的小麦LAI反演模型研究 被引量:15
5
作者 任哲 陈怀亮 +2 位作者 王连喜 李颖 李琪 《国土资源遥感》 CSCD 北大核心 2015年第4期34-40,共7页
叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI... 叶面积指数(leave area index,LAI)是表征植被冠层结构和生长状况的关键参数,采用遥感技术进行LAI反演是遥感反演领域的热点和难点之一。利用小麦关键生育期的高光谱数据,计算其一阶和二阶导数,并构建植被指数(RVI,NDVI,EVI,DVI和MSAVI)及三边变量参数等高光谱变量;将上述参数与小麦LAI数据进行相关性分析,并利用交叉验证法进行多种回归分析,确定反演小麦LAI的敏感参数,选择反演模型;最后使用敏感参数构建所有样本的小麦LAI反演模型,并比较其拟合效果。研究结果表明:经过交叉验证的反演建模,其拟合结果的均方根误差(RMSE)整体上较未经交叉验证反演建模结果的RMSE小;在用敏感参数构建的回归模型中,RVI立方回归模型是用遥感数据反演小麦LAI的最优模型。 展开更多
关键词 叶面积指数(lai) 遥感反演 交叉验证 小麦
在线阅读 下载PDF
融合可见光-近红外与短波红外特征的新型植被指数估算冬小麦LAI 被引量:6
6
作者 李鑫川 鲍艳松 +3 位作者 徐新刚 金秀良 张竞成 宋晓宇 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第9期2398-2402,共5页
考虑到短波红外特征与叶面积指数(LAI)有很好的关联,将短波红外特征的典型水分指数与基于可见光-近红外特征的植被指数相融合,尝试构建新的植被指数估算作物LAI。通过PROSAIL辐射传输模型分析新植被指数对LAI饱和响应的特征;利用2009年... 考虑到短波红外特征与叶面积指数(LAI)有很好的关联,将短波红外特征的典型水分指数与基于可见光-近红外特征的植被指数相融合,尝试构建新的植被指数估算作物LAI。通过PROSAIL辐射传输模型分析新植被指数对LAI饱和响应的特征;利用2009年和2008年北京地区冬小麦实测光谱数据进行LAI估算建模与验证。结果表明:所选择的10个典型可见光-近红外植被指数分别与5个水分植被指数相结合构建的新指数,都能够有效提高与LAI的相关性,特别是在融合了含有短波红外特征的sLAIDI*指数后,新指数显著提高了对LAI响应的饱和点,而对植被水分变化不敏感,LAI估算精度得到改善。研究表明:将短波红外特征引入到可见光-近红外植被指数中,构建的新植被指数对冬小麦LAI估算具有明显的优势。 展开更多
关键词 lai 高光谱遥感 植被指数 短波红外 slaiDI*
在线阅读 下载PDF
基于高光谱植被指数的水稻LAI遥感估算 被引量:8
7
作者 张敏 郭涛 +5 位作者 刘轲 黄平 喻君 刘仕川 刘泳伶 李源洪 《西南农业学报》 CSCD 北大核心 2022年第11期2651-2658,共8页
【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不... 【目的】探索植被指数(VI)及其波段选择、回归建模方法、训练样本选取三方面因素对基于统计模型的水稻叶面积指数(LAI)高光谱遥感估算的影响,构建县域水稻LAI估算模型,并在四川省凉山彝族自治州昭觉县开展实证应用。【方法】本文基于不同样本量的3套训练数据,分别对增强型植被指数(EVI)、修正三角植被指数2(MTVI2)、归一化差值植被指数(NDVI)和修正比值植被指数(MSR)开展波段选择。在此基础上,以1种VI作为LAI的特征参量,试用指数回归(ER)和人工神经网络(ANN),构建县域水稻LAI估算模型。计算LAI估算值和实测值之间的决定系数(R^(2))和均方根误差(RMSE),开展估算精度验证。【结果】①基于EVI或MTVI2的LAI估算精度优于NDVI和MSR。以ANN模型为例,基于优选波段的EVI和MTVI2得到的R^(2)分别为0.638和0.681,RMSE分别为0.554和0.519;而NDVI和MSR得到的R^(2)分别为0.567和0.560,RMSE分别为0.606和0.611。②基于各VI优选波段组合的LAI估算精度(平均R^(2)为0.574,平均RMSE为0.598)优于默认波段组合(平均R^(2)为0.424,平均RMSE为0.694)。③ANN模型的表现优于ER模型。在基于默认波段、优选波段的LAI估算试验中,ANN模型得到的平均R^(2)比ER模型分别提高40.27%和14.03%;平均RMSE分别降低11.32%和8.11%。④就本项目试验而言,训练样本量对基于ANN模型的LAI估测精度的影响不显著。例如,当训练样本量低至24时,基于EVI构建的ANN模型的测试精度(R^(2)=0.660,RMSE=0.537),仍然优于ER模型(R^(2)=0.597,RMSE=0.585)。【结论】VI及其波段选择与回归建模方法对县域水稻LAI高光谱遥感估算均有明显影响。针对特定区域的目标作物,尝试利用任意可能的波段组合来计算多种VI,遴选与实测LAI相关系数最大的VI及其波段组合,有益于提高基于VI的LAI高光谱遥感估算精度。同时,即使基于小样本训练数据,机器学习算法仍有可能得出优于参数回归的结果。 展开更多
关键词 叶面积指数 遥感反演 植被指数 波段选择 机器学习 样本量
在线阅读 下载PDF
融合冠层水分特征的光谱参数NCVI及反演玉米LAI 被引量:6
8
作者 曹仕 刘湘南 +2 位作者 刘美玲 曹珊 姚帅 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第2期478-482,共5页
精确反演农作物冠层叶面积指数对指导作物管理和作物估产具有非常重要的意义。以吉林市郊区玉米种植区为试点,考虑冠层叶片水分含量对LAI的贡献,在NDVI的基础上结合表征冠层叶片水分含量的植被指数DSWI,提出一种归一化综合植被指数NCVI... 精确反演农作物冠层叶面积指数对指导作物管理和作物估产具有非常重要的意义。以吉林市郊区玉米种植区为试点,考虑冠层叶片水分含量对LAI的贡献,在NDVI的基础上结合表征冠层叶片水分含量的植被指数DSWI,提出一种归一化综合植被指数NCVI,以此建立模型反演LAI,并对模型进行检验。结果表明:NCVI模型反演LAI值与实测值之间存在良好的对应关系,此模型突破了传统经验模型对稠密冠层LAI反演的局限,对LAI值大于3的冠层反演效果良好;另外,NCVI模型对土壤水环境十分敏感,在干旱半干旱地区的反演效果明显优于一般区域。 展开更多
关键词 叶面积指数 归一化综合植被指数 冠层水分含量 遥感反演 玉米
在线阅读 下载PDF
林下植被对遥感估算马尾松LAI的影响 被引量:2
9
作者 耿君 王磊 +6 位作者 田庆久 涂丽丽 黄彦 王龑 吕春光 杨冉冉 杨闫君 《生态学报》 CAS CSCD 北大核心 2015年第18期6007-6015,共9页
叶面积指数是一项极其重要的描述植被冠层结构的植被特征参量。根据植被物候规律,利用中国环境卫星CCD多光谱影像和野外马尾松样区调查数据,通过建立不同季节和不同郁闭度样区马尾松LAI和影像NDVI经验回归模型,并利用一个新的LAI观测方... 叶面积指数是一项极其重要的描述植被冠层结构的植被特征参量。根据植被物候规律,利用中国环境卫星CCD多光谱影像和野外马尾松样区调查数据,通过建立不同季节和不同郁闭度样区马尾松LAI和影像NDVI经验回归模型,并利用一个新的LAI观测方式定量比较乔木层LAI和生态系统总LAI(包括草本层、灌木层和乔木层)的差异,研究林下植被对马尾松反演的影响程度。结果表明:(1)由于林下植被的物候变化,冬季林下植被对马尾松LAI反演影响最小,马尾松NDVI和LAI线性关系R2维持在0.65;夏季林下植被影响最大,线性关系R2只有0.25;春季和秋季影响居中,NDVI和LAI线性关系R2在0.47附近。但是,受林下植被影响较小的A类样区4个季节内NDVI和LAI线性关系基本都在0.60以上(夏季略低于0.60);(2)乔木层LAI和总LAI差距非常大,最大差距达到2.93,相差的比例最大达到了2.45倍;(3)总LAI和NDVI相关关系显著,其中线性关系R2达到0.66,对数关系R2可达到0.68,而乔木层LAI和NDVI相关关系较差,线性关系R2只有0.30。分别建立冬季和其它季节实测总LAI和NDVI的关系,可以估算出林下植被对马尾松LAI反演的影响程度。 展开更多
关键词 林下植被 马尾松 叶面积指数(lai) 遥感 郁闭度 物候期 不确定性
在线阅读 下载PDF
叶面积指数(LAI)测定方法研究进展 被引量:35
10
作者 程武学 潘开志 杨存建 《四川林业科技》 2010年第3期51-54,78,共5页
叶面积指数(LAI)是指植物植株所有叶片单面面积总和与植株所占的土地面积的比值,能反映可用于光能截获和气体交换的植物潜在叶片面积,是研究农学、林学、生态学、气象学等学科的重要参数。本文总结了国内外测定叶面积指数的主要方法,地... 叶面积指数(LAI)是指植物植株所有叶片单面面积总和与植株所占的土地面积的比值,能反映可用于光能截获和气体交换的植物潜在叶片面积,是研究农学、林学、生态学、气象学等学科的重要参数。本文总结了国内外测定叶面积指数的主要方法,地面测定LAI和遥感反演LAI两大类方法的研究进展,同时阐述了LAI尺度转换的问题,并对各种测定方法进行了讨论,提出了一些改进的方法。 展开更多
关键词 叶面积指数(lai) 遥感反演 空间尺度
在线阅读 下载PDF
基于EnMAP卫星和深度神经网络的LAI遥感反演方法 被引量:4
11
作者 李雪玲 董莹莹 +1 位作者 朱溢佞 黄文江 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2020年第1期111-119,共9页
区域叶面积指数(Leaf Area Index,LAI)定量反演是开展大尺度农作物长势监测和产量估算的重要基础。针对当前区域LAI遥感定量反演存在的反演精度不理想和模型稳定性弱等问题,提出了一种基于少量训练样本进行LAI高精度反演的深度神经网络(... 区域叶面积指数(Leaf Area Index,LAI)定量反演是开展大尺度农作物长势监测和产量估算的重要基础。针对当前区域LAI遥感定量反演存在的反演精度不理想和模型稳定性弱等问题,提出了一种基于少量训练样本进行LAI高精度反演的深度神经网络(Small Simple Learning LAI-Net,SSLLAI-Net)。该网络由2个卷积层、1个池化层和3个全连接层构成,将光谱反射率数据作为网络输入端、输出端得到LAI反演值,且该网络模型可支持小样本数据量的训练。以德国阿尔卑斯山麓高光谱遥感卫星影像Environmental Mapping and Analysis Program(EnMAP)为数据源,以该区域的谷物、玉米、油菜、其他作物为研究对象,数值实验结果表明当各作物类别的训练样本量均为50时,基于SSLLAI-Net的LAI反演精度分别为0. 95、0. 99、0. 98、0. 90;且在添加噪声的情况下,各作物类别的LAI反演精度分别为0. 95、0. 98、0. 96、0. 89。综上,提出的基于深度神经网络的区域LAI遥感定量反演方法 SSLLAI-Net是鲁棒可靠的,且该模型能够支持稳定的小样本建模。 展开更多
关键词 叶面积指数 高光谱遥感 EnMAP 深度神经网络 SSLlai-Net
在线阅读 下载PDF
基于无人机多光谱遥感的玉米LAI估算研究 被引量:7
12
作者 贺佳 王来刚 +4 位作者 郭燕 张彦 杨秀忠 刘婷 张红利 《农业大数据学报》 2021年第4期20-28,共9页
叶面积指数(leafareaindex,LAI)是表征作物生长信息的重要参数,利用无人机遥感平台获取农作物光谱信息定量反演LAI对精确监测作物生长情况具有重要意义。本文以玉米为研究对象,利用无人机(un⁃mannedaerialvehicle,UAV)搭载MicaSenseRedE... 叶面积指数(leafareaindex,LAI)是表征作物生长信息的重要参数,利用无人机遥感平台获取农作物光谱信息定量反演LAI对精确监测作物生长情况具有重要意义。本文以玉米为研究对象,利用无人机(un⁃mannedaerialvehicle,UAV)搭载MicaSenseRedEdge-M多光谱成像仪获取玉米拔节期、抽雄期、成熟期等关键生育期内低空遥感影像,同步采集地面LAI,基于多光谱信息构建植被指数并研究其与LAI的定量关系,进一步建立玉米LAI估算模型,对比分析筛选最优植被指数与最适监测时期。实验发现在拔节期、抽雄期、成熟期玉米LAI与NDVI、OSAVI、EVI、NDRE均具有较好的相关性;在不同时期分别基于OSAVI、NDRE、NDRE建立了LAI监测模型,模型监测精度分别为0.549、0.753、0.733;验证模型精度分别为0.907、0.932、0.926,模型估算值与田间实测值间相对误差分别为8.57、8.37、9.24,均方根误差分别为0.104、0.087、0.091;基于不同生育时期LAI估算模型进行田块尺度的LAI空间分布制图,估算值与实测值的决定系数分别为0.883、0.931、0.867;相对误差分别为:9.17、8.86、9.32。结果表明基于MicaSenseRed⁃Edge-M多光谱成像仪能有效估算玉米关键生育时期LAI,可为定量实时估算田块尺度的玉米LAI提供理论依据。 展开更多
关键词 无人机 多光谱 遥感 玉米 叶面积指数
在线阅读 下载PDF
秦巴山地植被冠层降雨截留时空分异特征及驱动因素 被引量:5
13
作者 孙梓欣 朱连奇 +3 位作者 赵体侠 张哲 卢荣旺 朱文博 《生态学报》 CAS CSCD 北大核心 2024年第5期2029-2042,共14页
冠层截留研究对于了解区域水资源分配和评估生态水文功能至关重要,山地复杂多样的环境使其存在较大的不确定性,遥感的发展为揭示山地系统冠层截留的特征提供了机遇。以秦巴山地为研究区,基于降雨数据和叶面积指数遥感数据,耦合植被冠层... 冠层截留研究对于了解区域水资源分配和评估生态水文功能至关重要,山地复杂多样的环境使其存在较大的不确定性,遥感的发展为揭示山地系统冠层截留的特征提供了机遇。以秦巴山地为研究区,基于降雨数据和叶面积指数遥感数据,耦合植被冠层降雨截留模型,定量模拟和分析秦巴山地2003—2020年植被冠层降雨截留能力及其时空变化特征,并验证其精确性;采用地理探测器、相关分析和约束线法探究冠层截留的驱动因素。结果表明:(1)与PML_V2数据集和实测数据相比,3.5以下的均方根误差和0.75以上的有效系数证实了A.P.J.DE ROO模型模拟的可靠性。(2)近18年截留量和截留率整体呈上升趋势,截留率在2015年发生逆转,由增(0.08%/a)向减(-0.15%/a)转变。(3)秦巴山地冠层截留总体上呈西部高山区和东北部边缘低,秦岭和大巴山区高的空间格局,其随海拔上升呈现“上升-稳定-下降”的分布特征;空间变化以上升趋势为主,显著下降的区域主要分布在汉江河谷的中心;低海拔区域变化差异较大,中海拔区域以显著增加为主,高海拔区域无显著变化。(4)叶面积指数和降雨量是影响冠层截留的主要因子,约束关系分别为正线型和正凸型;阔叶林截留率与小降雨事件的相关性高,针叶林、灌丛截留率与强降雨事件相关性较强,气候因子对冠层截留的影响在类别和解释程度上存在空间差异。研究可为区域尺度冠层截留的估测提供思路,且有助于评估气候变化背景下生态系统对水循环的影响。 展开更多
关键词 降雨 叶面积指数 植被冠层截留 遥感 秦巴山地
在线阅读 下载PDF
基于支持向量机回归的冬小麦叶面积指数遥感反演 被引量:83
14
作者 梁栋 管青松 +2 位作者 黄文江 黄林生 杨贵军 《农业工程学报》 EI CAS CSCD 北大核心 2013年第7期117-123,共7页
利用单一植被指数反演叶面积指数(LAI)时,存在不同程度的饱和性且每种指数只能包含部分波段的信息,该文提出利用支持向量机回归的方法进行叶面积指数的反演,可以用更多的波段信息作为输入参数以提高LAI反演精度。选取冬小麦起身期、拔... 利用单一植被指数反演叶面积指数(LAI)时,存在不同程度的饱和性且每种指数只能包含部分波段的信息,该文提出利用支持向量机回归的方法进行叶面积指数的反演,可以用更多的波段信息作为输入参数以提高LAI反演精度。选取冬小麦起身期、拔节期和灌浆期的实测光谱和叶面积指数数据,用统计回归的方法分别建立NDVI-LAI和RVI-LAI模型,用支持向量机回归(SVR)方法分别建立以NDVI、RVI以及蓝、绿、红和近红外4个波段数据作为输入参数的回归预测模型,即NDVI-SVR、RVI-SVR和NRGB-SVR模型。上述5个模型分别利用对应时期的环境星HJ-CCD数据进行验证。结果表明:NDVI和RVI与叶面积指数(LAI)的回归模型预测的结果与实测值的RMSE分别为0.98与0.97;预测精度分别为59.2%与59.3%。以NDVI和RVI结合实测叶面积指数(LAI)训练并预测的结果与实测值的均方根误差RMSE分别为0.71与0.83预测精度分别为70.4%与67.1%。以蓝(B)、绿(G)、红(R)以及近红外(NIR)波段作为输入参数回归并预测的RMSE值为0.42,预测精度为81.7%。通过支持向量机回归预测具有更好的拟合效果,可以输入更多波段信息,提高了叶面积遥感反演精度,对冬小麦的多个生育期均具有较好的适用性。 展开更多
关键词 遥感 光谱分析 支持向量机 反演 叶面积指数 植被指数
在线阅读 下载PDF
基于作物模型与叶面积指数遥感影像同化的区域单产估测研究 被引量:44
15
作者 杨鹏 吴文斌 +4 位作者 周清波 陈仲新 查燕 唐华俊 柴崎亮介 《农业工程学报》 EI CAS CSCD 北大核心 2007年第9期130-136,共7页
通过对作物光合、呼吸、蒸腾、营养等一系列生理生化过程的定量模拟,作物生长模型已经被成功应用于田间尺度的作物单产研究。为了进一步将作物模型扩展应用于区域尺度,提高区域作物单产的模拟精度,该文探讨了将作物模型与多时相叶面积指... 通过对作物光合、呼吸、蒸腾、营养等一系列生理生化过程的定量模拟,作物生长模型已经被成功应用于田间尺度的作物单产研究。为了进一步将作物模型扩展应用于区域尺度,提高区域作物单产的模拟精度,该文探讨了将作物模型与多时相叶面积指数(LAI)遥感影像同化以改善区域单产估测的方法。研究首先通过地理信息系统将美国农业部开发的"考虑气候的作物环境决策模型"——EPIC模型,扩展为空间模型。然后,通过基于Landsat TM影像差值植被指数DVI与田间观测叶面积指数构建的最优回归模型,反演了研究区域的多时相叶面积指数影像。最后通过优化算法实现了空间EPIC模型与影像信息的同化,并将系统应用于河北石家庄地区2004年冬小麦的单产估测。结果表明,通过数据同化校正部分关键参数后的空间作物模型的单产模拟精度得到有效提高,但要达到业务运行精度仍有待进一步改善。 展开更多
关键词 遥感 估产 作物生长模型 数据同化 冬小麦 叶面积指数 植被指数
在线阅读 下载PDF
植被叶面积指数遥感监测模型 被引量:61
16
作者 李开丽 蒋建军 +1 位作者 茅荣正 倪绍祥 《生态学报》 CAS CSCD 北大核心 2005年第6期1491-1496,共6页
叶面积指数是植被定量遥感的重要参数,区域的时序列叶面积指数揭示了区域生态的演化过程,反演方法上主要是通过植被指数建立相关模型实现的,对于不同地区或不同气候带而言,模型的通用性以及各种植被指数在模型中的灵敏度都需做进一步的... 叶面积指数是植被定量遥感的重要参数,区域的时序列叶面积指数揭示了区域生态的演化过程,反演方法上主要是通过植被指数建立相关模型实现的,对于不同地区或不同气候带而言,模型的通用性以及各种植被指数在模型中的灵敏度都需做进一步的探讨。以江苏省宜兴市作为研究区,采用2002年8月22日获得的Landsat-5TM图像数据和2003年8月23~26日采用LAI-2000进行的野外实测植被叶面积指数(LAI)数据,分别探讨了植被指数(VI)与LAI的一元、多元线性回归模型和非线性回归模型,其中的非线性回归模型包括对数、指数、乘幂和多项式回归模型。结果表明,VI与LAI之间的最佳回归模型为多元线性回归模型,R2达0.864;采用逐步选择剔除法,遴选出了用于回归模型的植被指数为RVI、PVI、SAVIL=0.35、MSAVI、ARVIγ=1、ARVIγ=0.5和SARVI。经模型LAI=-ln((VI-VI∞)/(VIg-VI∞))/KVI检验,预测值(y)与实测值(x)的拟合度较好y=0.5345x+1.3304,R2为0.7379。RVI与LAI的三次多项式回归模型也较好,R2为0.7806。再次为RVI与LAI的一元线性回归模型,R2为0.7726,比值植被指数RVI在反演叶面积指数模型中具有较高的灵敏度。 展开更多
关键词 遥感 植被指数 叶面积指数 监测 模型
在线阅读 下载PDF
基于多光谱与高光谱遥感数据的冬小麦叶面积指数反演比较 被引量:49
17
作者 刘轲 周清波 +2 位作者 吴文斌 陈仲新 唐华俊 《农业工程学报》 EI CAS CSCD 北大核心 2016年第3期155-162,共8页
近年来,高光谱遥感数据广泛应用于农作物叶面积指数(LAI)反演。与常用的多光谱遥感数据相比,高光谱数据能否提高农作物LAI反演的精度和稳定性还存在争议。针对这一问题,该研究利用实测冬小麦冠层高光谱反射率数据,构造了不同光谱分辨率... 近年来,高光谱遥感数据广泛应用于农作物叶面积指数(LAI)反演。与常用的多光谱遥感数据相比,高光谱数据能否提高农作物LAI反演的精度和稳定性还存在争议。针对这一问题,该研究利用实测冬小麦冠层高光谱反射率数据,构造了不同光谱分辨率和波段组合的5种光谱数据。基于ACRM(a two-layer canopy reflectance model)模型、2套参数化方案及上述5种光谱数据,对冬小麦LAI进行反演,分析光谱分辨率、高光谱数据波段选择、模型参数不确定性3方面因素对LAI反演精度与稳定性的影响。研究结果表明:当波段选择适宜、模型参数不确定性较小且光谱数据分辨率较高时,LAI反演精度与稳定性更高,提高光谱分辨率对LAI反演精度的改进作用随光谱分辨率的升高而降低;反之,当高光谱数据波段选择不当或者模型参数不确定性较大时,提高光谱数据的分辨率并未提高LAI反演精度。该研究解释了"高光谱遥感数据能否提高植被参数反演精度"问题,为进一步发挥高光谱数据在农作物LAI反演中的潜力提供了科学参考。 展开更多
关键词 植被 遥感 光谱分析 叶面积指数 高光谱 反演 波段选择
在线阅读 下载PDF
基于低空无人机成像光谱仪影像估算棉花叶面积指数 被引量:56
18
作者 田明璐 班松涛 +4 位作者 常庆瑞 由明明 罗丹 王力 王烁 《农业工程学报》 EI CAS CSCD 北大核心 2016年第21期102-108,共7页
农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-ba... 农作物叶面积指数(leaf area index,LAI)遥感监测具有快速、无损的优势。该文以低空无人机作为遥感平台,使用新型成像光谱仪获取的农田高光谱影像数据对棉花LAI进行反演。利用影像高光谱分辨率的特点,针对传统固定波段植被指数(fixed-bandvegetation index,F_VI)进行改进,通过动态搜索相应植被指数定义所使用波段范围内的反射率极值的方法,计算与各类植被指数对应的极值植被指数(extremum vegetation index,E_VI)。分别以原始全波段光谱反射率、连续投影算法(successive projections algorithm,SPA)提取的有效波段反射率以及各类F_VI和E_VI作为自变量,使用最小二乘和偏最小二乘(partial least squares,PLS)回归等方法构建LAI遥感估算模型。结果显示:1)以植被指数为自变量的模型估算效果(验证R2最高为0.85)优于以光谱反射率作为自变量的模型(验证R2最高为0.59);2)使用E_VI作为自变量能够显著提高LAI的估测精度(验证R2最大提高了0.11);3)使用PLS回归算法结合多个E_VI建立的LAI-E_VIs-PLS模型精度最高。使用LAI-E_VIs-PLS模型对棉花地块高光谱影像进行反演,制作棉花LAI空间分布图,取得良好的估算结果(验证R2=0.88,RMSE=0.29),为农作物LAI遥感监测提供了新的技术手段。 展开更多
关键词 无人机 作物 遥感 高光谱成像 棉花 叶面积指数 极值植被指数
在线阅读 下载PDF
由冠层孔隙度反演植被叶面积指数的算法比较 被引量:16
19
作者 吴彤 倪绍祥 +1 位作者 李云梅 陈健 《南京师大学报(自然科学版)》 CAS CSCD 北大核心 2006年第1期111-115,共5页
植被的叶面积指数(LAI)是植被最重要的生态参数之一,也是估算多种植被冠层功能过程的关键参数.迄今已提出的LAI的获取方法可归纳为直接测定和间接估算两大类.本文以河北省黄骅市为研究区,从遥感光学模型建立机理及数量分析的角度,对由... 植被的叶面积指数(LAI)是植被最重要的生态参数之一,也是估算多种植被冠层功能过程的关键参数.迄今已提出的LAI的获取方法可归纳为直接测定和间接估算两大类.本文以河北省黄骅市为研究区,从遥感光学模型建立机理及数量分析的角度,对由植被冠层孔隙度反演植被LAI的4种间接估算方法进行了试验和比较.研究结果表明,LAI与植被盖度之间呈明显的正相关关系,即随着LAI的增大,植被盖度也在增大.在这4种估算方法中,LAI-2000算法最适用于研究区植被LAI的估算. 展开更多
关键词 遥感 叶面积指数 算法 植被冠层 孔隙度
在线阅读 下载PDF
基于SPOT遥感数据的甘蔗叶面积指数反演和产量估算 被引量:38
20
作者 何亚娟 潘学标 +3 位作者 裴志远 马尚杰 Heather McNirn Jiali Shang 《农业机械学报》 EI CAS CSCD 北大核心 2013年第5期226-231,共6页
利用SPOT遥感数据进行甘蔗叶面积指数LAI反演,建立最佳NDVI-LAI反演模型,同时结合不同生育期甘蔗叶面积指数的时序变化规律,建立各生育期甘蔗叶面积指数LAI与产量的相关关系,得到甘蔗叶面积指数LAI-产量最佳估产模型。在验证甘蔗叶面积... 利用SPOT遥感数据进行甘蔗叶面积指数LAI反演,建立最佳NDVI-LAI反演模型,同时结合不同生育期甘蔗叶面积指数的时序变化规律,建立各生育期甘蔗叶面积指数LAI与产量的相关关系,得到甘蔗叶面积指数LAI-产量最佳估产模型。在验证甘蔗叶面积指数LAI的基础上,利用遥感反演的甘蔗叶面积指数LAI进行甘蔗单产估算。结果表明:甘蔗叶面积指数LAI与NDVI之间存在显著的正相关关系,全生育期二者的相关性最高,以二次函数模型拟合效果最佳,决定系数R2为0.842 9。将遥感数据反演得到的平均叶面积指数LAI数据代入甘蔗叶面积LAI-产量模型得到全县平均单产,与统计数据相比,相对误差仅为2.6%。说明该模型具有较好的估产效果,可以为甘蔗区域估产提供重要参考。 展开更多
关键词 甘蔗 SPOT遥感数据 归一化植被指数 叶面积指数 产量
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部