The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite el...The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.展开更多
面对深渊等极端海洋环境下的科考需求,自主遥控水下机器人(autonomous and remotely-operated vehicle,简称ARV)凭借其探测范围大和能局部采样作业的综合能力和特点,在深海领域发挥着越来越重要的作用。文章以中国首台具备探测与作业能...面对深渊等极端海洋环境下的科考需求,自主遥控水下机器人(autonomous and remotely-operated vehicle,简称ARV)凭借其探测范围大和能局部采样作业的综合能力和特点,在深海领域发挥着越来越重要的作用。文章以中国首台具备探测与作业能力的全海深自主遥控水下机器人——“海斗一号”为研究对象。“海斗一号”在探测作业时,通过光纤微缆与母船保持实时通信,其特有的光纤压坠器装置对光纤链路的稳定性起到至关重要的作用。基于此,设计了一套“海斗一号”专用的布放回收装置,并探索形成了一套有效的布放回收方法,实现了“海斗一号”与光纤压坠器的安全布放与回收;针对布放回收过程中“海斗一号”的起吊架需应对不同起吊工况的需求,基于“海斗一号”轻量化的设计要求,提出采用多工况拓扑优化设计方法开展起吊架构型设计,对最终设计构型在2种工况下分别进行了有限元数值仿真,进一步完成了压载试验和海试应用验证。结果表明,文中所述“海斗一号”收放装置设计及优化方法切实有效,满足“海斗一号”开展深渊科考时的需求,为ARV布放回收及其装置优化设计提供了工程经验和理论指导。展开更多
基金Project(2008AA09Z201)supported by the National High Technology Research and Development Program of China
文摘The armored cable used in a deep-sea remotely operated vehicle(ROV) may undergo large displacement motion when subjected to dynamic actions of ship heave motion and ocean current. A novel geometrically exact finite element model for two-dimensional dynamic analysis of armored cable is presented. This model accounts for the geometric nonlinearities of large displacement of the armored cable, and effects of axial load and bending stiffness. The governing equations are derived by consistent linearization and finite element discretization of the total weak form of the armored cable system, and solved by the Newmark time integration method. To make the solution procedure avoid falling into the local extreme points, a simple adaptive stepping strategy is proposed. The presented model is validated via actual measured data. Results for dynamic configurations, motion and tension of both ends of the armored cable, and resonance-zone are presented for two numerical cases, including the dynamic analysis under the case of only ship heave motion and the case of joint action of ship heave motion and ocean current. The dynamics analysis can provide important reference for the design or product selection of the armored cable in a deep-sea ROV system so as to improve the safety of its marine operation under the sea state of 4 or above.
文摘面对深渊等极端海洋环境下的科考需求,自主遥控水下机器人(autonomous and remotely-operated vehicle,简称ARV)凭借其探测范围大和能局部采样作业的综合能力和特点,在深海领域发挥着越来越重要的作用。文章以中国首台具备探测与作业能力的全海深自主遥控水下机器人——“海斗一号”为研究对象。“海斗一号”在探测作业时,通过光纤微缆与母船保持实时通信,其特有的光纤压坠器装置对光纤链路的稳定性起到至关重要的作用。基于此,设计了一套“海斗一号”专用的布放回收装置,并探索形成了一套有效的布放回收方法,实现了“海斗一号”与光纤压坠器的安全布放与回收;针对布放回收过程中“海斗一号”的起吊架需应对不同起吊工况的需求,基于“海斗一号”轻量化的设计要求,提出采用多工况拓扑优化设计方法开展起吊架构型设计,对最终设计构型在2种工况下分别进行了有限元数值仿真,进一步完成了压载试验和海试应用验证。结果表明,文中所述“海斗一号”收放装置设计及优化方法切实有效,满足“海斗一号”开展深渊科考时的需求,为ARV布放回收及其装置优化设计提供了工程经验和理论指导。