Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.I...Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.In this paper,the authors have been studying electromagnetic design of this motor.展开更多
In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to preve...In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to prevent the suck-back effect caused by the residual current in drive coil.The method is adding a reverse charging branch with a small capacitor in the traditional pulsed discharging circuit.The results under the traditional circuit and the improved circuit were compared in a simulation.The experiment then verified the simulations and they had good agreement.Simulation and experiment both demonstrated the improved circuit can effectively prevent the suck-back effect and increase the efficiency.At the voltage of 800 V,an efficiency increase of 36.34% was obtained.展开更多
The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature....The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.展开更多
文摘Switched reluctance motors(SRM)with full-pitch windings and segmental rotors are particularly suitable for the drive systems in aerospace environments because of low wind(oil)resistance and iron losses at high speed.In this paper,the authors have been studying electromagnetic design of this motor.
基金This work was supported by the Fundamental Research Funds for the Central Universities[Grant number 2019XJ01].
文摘In this paper,an improved discharging circuit was proposed to quicken the decay of the current in the drive coil in a reluctance accelerator when the armature reaches the center of the coil.The aim of this is to prevent the suck-back effect caused by the residual current in drive coil.The method is adding a reverse charging branch with a small capacitor in the traditional pulsed discharging circuit.The results under the traditional circuit and the improved circuit were compared in a simulation.The experiment then verified the simulations and they had good agreement.Simulation and experiment both demonstrated the improved circuit can effectively prevent the suck-back effect and increase the efficiency.At the voltage of 800 V,an efficiency increase of 36.34% was obtained.
基金supported in part by the Fundamental Research Funds for the Central Universities,China[grant number 2682020GF03]in part by the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle,Ministry of Education,China.
文摘The armature is an important part affecting the energy conversion efficiency of a reluctance accelerator.In this paper,six kinds of soft magnetic materials are chosen and four structures are designed for the armature.At first,the circuit and magnetic force are theoretically analyzed.Then the armatures with different materials and structures are used in the simulation,and the performances are compared and analyzed.At last,the experiment verifies the theory analysis and simulation design.It is concluded that the saturation flux density and conductivity of the material are the key factors affecting the armature force,and the optimization of armature structure can effectively restrain the eddy current,reduce negative force and improve efficiency.Compared with cutting slits in solid armatures,laminating the sheets radially can reduce the eddy current more efficiently.Although slitting can prevent the eddy current to a certain extent,meanwhile,it will decrease the magnetic force because of the losing of magnetized volume and the surface area.Hence,choosing the high saturation flux density material and making out the armature with radially_laminated sheets will improve the efficiency of the reluctance accelerator.In this paper,the silicon steel radially_laminated armature is a better choice for the armature design of the reluctance accelerator.