A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus...A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.展开更多
基于DIC(Deviance Information Criterion)信息准则、BGR(Brooks-Gelman-Rubin)诊断原理、蒙特卡洛仿真误差及模型参数和可靠性指标后验估计的区间长度,提出了数控机床贝叶斯可靠性模型的综合评价方法.给出了不同先验下用于Gibbs抽样的...基于DIC(Deviance Information Criterion)信息准则、BGR(Brooks-Gelman-Rubin)诊断原理、蒙特卡洛仿真误差及模型参数和可靠性指标后验估计的区间长度,提出了数控机床贝叶斯可靠性模型的综合评价方法.给出了不同先验下用于Gibbs抽样的幂律过程模型参数的后验分布,并利用马尔科夫链蒙特卡洛法获得了模型参数和可靠性指标的贝叶斯点估计和区间估计.通过2个工程实例进行验证,结果表明,幂律过程模型各项评价指标均优于Weibull分布模型,适用于小样本故障数据数控机床的可靠性评估.展开更多
基金Project(2014ZX04014-011)supported by State Key Science&Technology Program of ChinaProject([2016]414)supported by the 13th Five-year Program of Education Department of Jilin Province,China
文摘A new problem that classical statistical methods are incapable of solving is reliability modeling and assessment when multiple numerical control machine tools(NCMTs) reveal zero failures after a reliability test. Thus, the zero-failure data form and corresponding Bayesian model are developed to solve the zero-failure problem of NCMTs, for which no previous suitable statistical model has been developed. An expert-judgment process that incorporates prior information is presented to solve the difficulty in obtaining reliable prior distributions of Weibull parameters. The equations for the posterior distribution of the parameter vector and the Markov chain Monte Carlo(MCMC) algorithm are derived to solve the difficulty of calculating high-dimensional integration and to obtain parameter estimators. The proposed method is applied to a real case; a corresponding programming code and trick are developed to implement an MCMC simulation in Win BUGS, and a mean time between failures(MTBF) of 1057.9 h is obtained. Given its ability to combine expert judgment, prior information, and data, the proposed reliability modeling and assessment method under the zero failure of NCMTs is validated.
文摘基于DIC(Deviance Information Criterion)信息准则、BGR(Brooks-Gelman-Rubin)诊断原理、蒙特卡洛仿真误差及模型参数和可靠性指标后验估计的区间长度,提出了数控机床贝叶斯可靠性模型的综合评价方法.给出了不同先验下用于Gibbs抽样的幂律过程模型参数的后验分布,并利用马尔科夫链蒙特卡洛法获得了模型参数和可靠性指标的贝叶斯点估计和区间估计.通过2个工程实例进行验证,结果表明,幂律过程模型各项评价指标均优于Weibull分布模型,适用于小样本故障数据数控机床的可靠性评估.