期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Improved Twin Support Vector Machine Algorithm and Applications in Classification Problems
1
作者 Sun Yi Wang Zhouyang 《China Communications》 SCIE CSCD 2024年第5期261-279,共19页
The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will resu... The distribution of data has a significant impact on the results of classification.When the distribution of one class is insignificant compared to the distribution of another class,data imbalance occurs.This will result in rising outlier values and noise.Therefore,the speed and performance of classification could be greatly affected.Given the above problems,this paper starts with the motivation and mathematical representing of classification,puts forward a new classification method based on the relationship between different classification formulations.Combined with the vector characteristics of the actual problem and the choice of matrix characteristics,we firstly analyze the orderly regression to introduce slack variables to solve the constraint problem of the lone point.Then we introduce the fuzzy factors to solve the problem of the gap between the isolated points on the basis of the support vector machine.We introduce the cost control to solve the problem of sample skew.Finally,based on the bi-boundary support vector machine,a twostep weight setting twin classifier is constructed.This can help to identify multitasks with feature-selected patterns without the need for additional optimizers,which solves the problem of large-scale classification that can’t deal effectively with the very low category distribution gap. 展开更多
关键词 FUZZY ordered regression(OR) relaxing variables twin support vector machine
在线阅读 下载PDF
A Novel Resource Allocation Method in Ultra-Dense Network Based on Noncooperation Game Theory 被引量:8
2
作者 Zhen Wang Xiaorong Zhu +1 位作者 Xu Bao Su Zhao 《China Communications》 SCIE CSCD 2016年第10期169-180,共12页
In ultra-dense networks(UDNs), large-scale deployment of femto base stations is an important technique for improving the network throughput and quality of service(QoS). In this paper, a multidimensional resource alloc... In ultra-dense networks(UDNs), large-scale deployment of femto base stations is an important technique for improving the network throughput and quality of service(QoS). In this paper, a multidimensional resource allocation algorithm based on noncooperation game theory is proposed to manage the resource allocation in UDNs, including transmission point association, user channels, and power. The algorithm derives a multidimensional resource optimization model and converts into a noncooperation game model according to the analysis of transmission point association user channel and power allocation. The algorithm includes two phases: transmission point association, and channel and power allocation. Then, feasible domain and discrete variables relaxation approaches are introduced to derive an approximate optimal multidimensional resource allocation solution with low complexity. Simulation results show that this method has some advantages in suppressing interference and improves the overall system throughput, while ensuring the QoS of femtocell users. 展开更多
关键词 resource allocation noncooperation game theory variables relaxation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部