To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This pape...To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This paper breaks the traditional divide and conquer idea, and uses a mathematical tool, namely dual quaternion to establish the integrated 6 degree-of-freedom(6-DOF) model of relative position and attitude, which describes the coupled relative motion in a compact and efficient form and needs less information of the target. Considering the complex operation rules and the unclarity of the current relative motion model in dual quaternion, necessary mathematical foundations are given at first, followed by clear and detailed modeling process and analysis. Finally a generalized proportion-derivative(PD) controller law is designed. The simulation results show that based on the integrated model established by dual quaternion, this control law can achieve a high control accuracy of relative motion.展开更多
With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key techn...With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.展开更多
基金supported by the National Natural Science Foundation of China(6107412761427809)
文摘To realize high accurate control of relative position and attitude between two spacecrafts, the coupling between position and attitude must be fully considered and a more precise model should be established. This paper breaks the traditional divide and conquer idea, and uses a mathematical tool, namely dual quaternion to establish the integrated 6 degree-of-freedom(6-DOF) model of relative position and attitude, which describes the coupled relative motion in a compact and efficient form and needs less information of the target. Considering the complex operation rules and the unclarity of the current relative motion model in dual quaternion, necessary mathematical foundations are given at first, followed by clear and detailed modeling process and analysis. Finally a generalized proportion-derivative(PD) controller law is designed. The simulation results show that based on the integrated model established by dual quaternion, this control law can achieve a high control accuracy of relative motion.
基金National Natural Science Foundation of China(U20B2054)。
文摘With the development of space technology,it is possible to build a space station in Earth-Moon space as a transit for Earth-Moon round-trip and entering in the deep space.Rendezvous and docking is one of the key technologies for building an Earth-Moon space station.A guidance strategy for rendezvous and docking from the Earth orbit to the space station in the Earth-Moon NRHO orbit is proposed in this paper,which is suitable for engineering applications.Firstly,the rendezvous and docking process is divided into three sections,i.e.,the large-range orbit transfer section,far-range guidance section,and close-range approaching section.The suitable terminal of large-range orbit transfer is selected according to the eigenvalue of NRHO orbit state transition matrix.The two-impulse guidance method based on the relative motion equation in the three-body problem is adopted for the far-range guidance section.The impulse time and amplitude are solved with the optimization algorithm.The linear constant three-body relative motion equation is proposed for the close-range approaching section,and the rendezvous and docking is completed by a two-stage linear approximation.Finally,a simulation analysis is carried out,and the simulation results show that the adopted dynamics equations and the designed guidance law are effective,and the three flight phases are naturally connected to accomplish the rendezvous and docking mission from the Earth orbit to the space station on the Earth-Moon NRHO.