期刊文献+
共找到4,274篇文章
< 1 2 214 >
每页显示 20 50 100
Adaptive WNN aerodynamic modeling based on subset KPCA feature extraction 被引量:5
1
作者 孟月波 邹建华 +1 位作者 甘旭升 刘光辉 《Journal of Central South University》 SCIE EI CAS 2013年第4期931-941,共11页
In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel pr... In order to accurately describe the dynamic characteristics of flight vehicles through aerodynamic modeling, an adaptive wavelet neural network (AWNN) aerodynamic modeling method is proposed, based on subset kernel principal components analysis (SKPCA) feature extraction. Firstly, by fuzzy C-means clustering, some samples are selected from the training sample set to constitute a sample subset. Then, the obtained samples subset is used to execute SKPCA for extracting basic features of the training samples. Finally, using the extracted basic features, the AWNN aerodynamic model is established. The experimental results show that, in 50 times repetitive modeling, the modeling ability of the method proposed is better than that of other six methods. It only needs about half the modeling time of KPCA-AWNN under a close prediction accuracy, and can easily determine the model parameters. This enables it to be effective and feasible to construct the aerodynamic modeling for flight vehicles. 展开更多
关键词 WAVELET neural network fuzzy C-means clustering kernel principal components analysis feature extraction aerodynamic modeling
在线阅读 下载PDF
Consensus model of social network group decision-making based on trust relationship among experts and expert reliability 被引量:4
2
作者 WANG Ya CAI Mei JIAN Xinglian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1576-1588,共13页
Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship am... Due to people’s increasing dependence on social networks,it is essential to develop a consensus model considering not only their own factors but also the interaction between people.Both external trust relationship among experts and the internal reliability of experts are important factors in decision-making.This paper focuses on improving the scientificity and effectiveness of decision-making and presents a consensus model combining trust relationship among experts and expert reliability in social network group decision-making(SN-GDM).A concept named matching degree is proposed to measure expert reliability.Meanwhile,linguistic information is applied to manage the imprecise and vague information.Matching degree is expressed by a 2-tuple linguistic model,and experts’preferences are measured by a probabilistic linguistic term set(PLTS).Subsequently,a hybrid weight is explored to weigh experts’importance in a group.Then a consensus measure is introduced and a feedback mechanism is developed to produce some personalized recommendations with higher group consensus.Finally,a comparative example is provided to prove the scientificity and effectiveness of the proposed consensus model. 展开更多
关键词 social network group decision-making(SN-GDM) trust relationship expert reliability consensus model probabilistic linguistic term set(PLTS).
在线阅读 下载PDF
Enantioselective extraction of clorprenaline enantiomers with hydrophilic selector of sulfobutylether-β-cyclodextrin by experiment and modeling 被引量:1
3
作者 周丛山 徐萍 +4 位作者 唐课文 蒋新宇 杨涛 张盼良 朱政 《Journal of Central South University》 SCIE EI CAS 2014年第3期891-899,共9页
Enantioselective extraction of hydrophobic clorprenaline (CPE) enantiomers from organic phase to aqueous phases with sulfobutylether-β-cyclodextrin (SBE-β-CD) as the selector was investigated with insight into a... Enantioselective extraction of hydrophobic clorprenaline (CPE) enantiomers from organic phase to aqueous phases with sulfobutylether-β-cyclodextrin (SBE-β-CD) as the selector was investigated with insight into a number of important process variables, such as the type of organic solvent, concentration of selector, pH, and temperature. Equilibrium of the extraction system was modeled using a reactive extraction modcl with a homogeneous aqueous phase reaction. The important parameters of this model were determined experimentally. The physical distribution coefficients for molecular and ionic CPE were determined as 0.3 and 8.93, respectively. The equilibrium constants of the complexation reaction with SBE-β-CD were determined as 152 and 110 L/mol for R- and S-CPE, respectively. Results show that the experimental data agree with the model predictions perfectly. Comprehensively considering the experiment and model, the extraction conditions are optimized and the best extraction conditions are: pH of 6.0, SBE-β-CD concentration of 0.04 tool/L, and temperature of 5 ℃, providing the enantioselectivity (a) of 1.25, the fraction of R-CPE (φR) in aqueous phase of 0.71 and performance factor (pf) of 0.025. 展开更多
关键词 clorprenaline sulfobutylether-fl-cyclodextrin reactive extraction chiral recognition modeling
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
4
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Double-gate tunnel field-effect transistor:Gate threshold voltage modeling and extraction
5
作者 李妤晨 张鹤鸣 +3 位作者 胡辉勇 张玉明 王斌 周春宇 《Journal of Central South University》 SCIE EI CAS 2014年第2期587-592,共6页
The tunnel field-effect transistor(TFET) is a potential candidate for the post-CMOS era.As one of the most important electrical parameters of a device,double gate TFET(DG-TFET) gate threshold voltage was studied.First... The tunnel field-effect transistor(TFET) is a potential candidate for the post-CMOS era.As one of the most important electrical parameters of a device,double gate TFET(DG-TFET) gate threshold voltage was studied.First,a numerical simulation study of transfer characteristic and gate threshold voltage in DG-TFET was reported.Then,a simple analytical model for DG-TFET gate threshold voltage VTG was built by solving quasi-two-dimensional Poisson equation in Si film.The model as a function of the drain voltage,the Si layer thickness,the gate length and the gate dielectric was discussed.It is shown that the proposed model is consistent with the simulation results.This model should be useful for further investigation of performance of circuits containing TFETs. 展开更多
关键词 tunnel field-effect transistor gated P-I-N diode threshold voltage modeling extraction
在线阅读 下载PDF
Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process 被引量:13
6
作者 YANG Hui CHAI Tian-You 《自动化学报》 EI CSCD 北大核心 2006年第4期489-495,共7页
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err... Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness. 展开更多
关键词 RAre-EARTH countercurrent extraction soft-sensor equilibrium calculation model neural networks
在线阅读 下载PDF
Crack evolution behavior of rocks under confining pressures and its propagation model before peak stress 被引量:12
7
作者 ZUO Jian-ping CHEN Yan LIU Xiao-li 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第11期3045-3056,共12页
The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation beha... The understanding of crack propagation characteristics and law of rocks during the loading process is of great significance for the exploitation and support of rock engineering.In this study,the crack propagation behavior of rocks in triaxial compression tests was investigated in detail.The main conclusions were as follows:1)According to the evolution characteristics of crack axial strain,the differential stress?strain curve of rocks under triaxial compressive condition can be divided into three phases which are linear elastic phase,crack propagation phase,post peak phase,respectively;2)The proposed models are applied to comparison with the test data of rocks under triaxial compressive condition and different temperatures.The theoretical data calculated by the models are in good agreement with the laboratory data,indicating that the proposed model can be applied to describing the crack propagation behavior and the nonlinear properties of rocks under triaxial compressive condition;3)The inelastic compliance and crack initiation strain in the proposed model have a decrease trend with the increase of confining pressure and temperature.Peak crack axial strain increases nonlinearly with the inelastic compliance and the increase rate increases gradually.Crack initiation strain has a linear relation with peak crack axial strain. 展开更多
关键词 crack strain crack propagation behavior crack propagation model stress strain relationship
在线阅读 下载PDF
3-D numerical modelling of Domino failure of hard rock pillars in Fetr6 Chromite Mine, Iran, and comparison with empirical methods 被引量:12
8
作者 S.Dehghan K.Shahriar +1 位作者 P.Maarefvand K.Goshtasbi 《Journal of Central South University》 SCIE EI CAS 2013年第2期541-549,共9页
Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concret... Fetr6 is an underground mine using the stope-and-pillar mining method. As there was some evidence regarding pillar failure in this mine, improving works such as roof support and replacing existing pillars with concrete pillars (CP) were carried out. During the construction of the second CP, in the space between the remaining pillars, one of the pillars failed leading to the progressive failure of other pillars until 4 000 m 2 of mine had collapsed within a few minutes. In this work, this phenomenon is described by applying both numerical and empirical methods and the respective results are compared. The results of numerical modelling are found to be closer to the actual condition than those of the empirical method. Also, a width-to-height (W/H) ratio less than 1, an inadequate support system and the absence of a detailed program for pillar recovery are shown to be the most important causes of the Domino failure in this mine. 展开更多
关键词 hard rock Domino failure numerical modelling empirical method STOPE PILLAR extraction ratio W/H ratio
在线阅读 下载PDF
Vibration-based feature extraction of determining dynamic characteristic for engine block low vibration design 被引量:2
9
作者 杜宪峰 李志军 +3 位作者 毕凤荣 张俊红 王霞 邵康 《Journal of Central South University》 SCIE EI CAS 2012年第8期2238-2246,共9页
In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p... In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs. 展开更多
关键词 feature extraction dynamic characteristic finite element model empirical mode decomposition diesel engine block
在线阅读 下载PDF
Hybrid reliability model for fatigue reliability analysis of steel bridges 被引量:1
10
作者 曹珊珊 雷俊卿 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期449-460,共12页
A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter cha... A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of the S-N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO. 展开更多
关键词 hybrid reliability model (HRM) consistency relationships linear and bilinear S-N curve fatigue reliability normal distribution
在线阅读 下载PDF
Discharge area segmentation of power equipment in UV image based on GVF snake model
11
作者 He Zhenhua Deng Wei +3 位作者 Li Lianlian Huang Wenwu Wang Wei Liu Xuming 《仪器仪表学报》 EI CAS CSCD 北大核心 2014年第S1期180-185,共6页
The dynamic transmission characteristics and the sensitivities of the three stage idler gear system of the new NC power turret are studied in the paper. Considering the strongly nonlinear factors such as the periodica... The dynamic transmission characteristics and the sensitivities of the three stage idler gear system of the new NC power turret are studied in the paper. Considering the strongly nonlinear factors such as the periodically time-varying mesh stiffness, the nonlinear tooth backlash, the lump-parameter model of the gear system is developed with one rotational and two translational freedoms of each gear. The eigen-values and eigenvectors are derived and analyzed on the basis of the real modal theory. The sensitivities of natural frequencies to design parameters including supporting and meshing stiffnesses, gear masses, and moments of inertia by the direct differential method are also calculated. The results show the quantitative and qualitative impact of the parameters to the natural characteristics of the gear system. Furthermore, the periodic steady state solutions are obtained by the numerical approach based on the nonlinear model. These results are employed to gain insights into the primary controlling parameters, to forecast the severity of the dynamic response, and to assess the acceptability of the gear design. 展开更多
关键词 UV imaging IMAGE segmentation DISCHARGE region extraction GRADIENT vector flow SNAKE model
在线阅读 下载PDF
A Mathematical Model for Juice Extraction from Chopped Sweet Sorghum
12
作者 Sun Xiao-zheng Yamana Nobuki 《Journal of Northeast Agricultural University(English Edition)》 CAS 2017年第2期81-88,共8页
Juice extraction from chopped sweet sorghum is an example of flow through porous media. Darcy’s law is often used to express this type of phenomenon. However, using Darcy’s law to construct a mathematical model to p... Juice extraction from chopped sweet sorghum is an example of flow through porous media. Darcy’s law is often used to express this type of phenomenon. However, using Darcy’s law to construct a mathematical model to predict juice extraction from chopped sweet sorghum is difficult, because the volume of the porous media changes during the pressing operations. A mathematical model was developed from fundamental analysis to predict the juice extraction ratio of chopped sweet sorghum, and experiments were conducted to verify the model. An experimental piston-cylinder assembly was developed to conduct the validation experiments. The parameters in the developed model were estimated by using non-linear regression analysis from the experimental data. Plots of the mathematical model agreed well with experimental data. R^2(coefficient of determination) values for all the regressions studied were higher than 0.99. Results showed that the juice extraction ratio of chopped sweet sorghum approached an asymptote with a maximum value that depended on the physical form of the sample. The model could help in understanding the mechanics of juice extraction from chopped sweet sorghum. 展开更多
关键词 juice extraction property mathematical model pressure use efficiency sweet sorghum
在线阅读 下载PDF
PGA-SciRE:基于大语言模型的数据增强框架进行科学领域的关系抽取
13
作者 周洋 单世民 +2 位作者 魏宏夔 赵哲焕 冯文铄 《中文信息学报》 北大核心 2025年第6期55-66,共12页
关系抽取旨在识别文本中提到的实体对之间的关系。大语言模型的进步对自然语言处理任务产生了巨大的影响。该文针对科学领域的关系抽取任务,提出一个名为PGA的数据增强框架,用于提升模型在科学领域的关系抽取的性能。框架引入了两种数... 关系抽取旨在识别文本中提到的实体对之间的关系。大语言模型的进步对自然语言处理任务产生了巨大的影响。该文针对科学领域的关系抽取任务,提出一个名为PGA的数据增强框架,用于提升模型在科学领域的关系抽取的性能。框架引入了两种数据增强的方式,利用大语言模型通过转述原训练集样本,得到句意相同但具备不同表述和形式的伪样本以及指导大语言模型根据原训练集样本的关系和实体标签,生成暗含对应标签信息的句子,这两种伪样本分别与原数据集共同参与关系抽取模型的训练。PGA框架提高了三个主流模型的科学领域内关系抽取的F_(1)分数。同时,使用大语言模型获得样本也能有效减少人工标注数据的成本。 展开更多
关键词 数据增强 关系抽取 大语言模型
在线阅读 下载PDF
一种用于遥感影像信息提取的改进Relief算法 被引量:1
14
作者 王宇豪 曹红新 +2 位作者 秦增忍 王帆 朱镇 《遥感信息》 北大核心 2025年第1期71-78,共8页
针对Relief算法的特征权重受样本随机性影响较大、不适用于多类别间的特征选择且无法自动确定特征阈值等不足,提出了一种改进的Relief算法,用于面向对象的遥感影像信息提取。新算法基于正态分布改进Relief算法的样本抽样策略和特征权重... 针对Relief算法的特征权重受样本随机性影响较大、不适用于多类别间的特征选择且无法自动确定特征阈值等不足,提出了一种改进的Relief算法,用于面向对象的遥感影像信息提取。新算法基于正态分布改进Relief算法的样本抽样策略和特征权重更新方式,提出特征组合评判指标Cω用于多类别间特征选择,最后根据高斯混合模型自动确定特征的阈值。基于陕西省周至县地区无人机影像和湖北省巴东县地区高分六号影像的实例测试结果表明,IRelief算法不仅能有效对特征进行降维和精选,还能够自动计算特征在分类时的阈值,总体精度、Kappa系数以及其他精度评价指标均优于Relief和ReliefF算法,是一种更优的特征选择算法。 展开更多
关键词 reLIEF 特征选择 面向对象 信息提取 正态分布 高斯混合模型
在线阅读 下载PDF
基于RepVGG的鲁棒头部姿态估计算法
15
作者 孟雪莹 傅由甲 《计算机工程与设计》 北大核心 2025年第10期2927-2935,共9页
针对头部姿态估计方法中特征鲁棒性较差,关键特征捕捉不足以及模型的稳定性和准确率不平衡等问题,提出基于改进RepVGG的鲁棒头部姿态估计方法 RepVGG-DP。该方法在RepVGG模型前添加特征增强模块以优化特征质量;加入PNB模块以融合原始和... 针对头部姿态估计方法中特征鲁棒性较差,关键特征捕捉不足以及模型的稳定性和准确率不平衡等问题,提出基于改进RepVGG的鲁棒头部姿态估计方法 RepVGG-DP。该方法在RepVGG模型前添加特征增强模块以优化特征质量;加入PNB模块以融合原始和加工特征细节信息,提升特征提取能力;融合测地线距离和调整尺度的Frobenius范数构建新的损失函数。实验结果表明,在AFLW2000和BIWI数据集上,RepVGG-DP的MAE值分别降低0.21°、0.29°和0.38°,显示出显著的性能提升。 展开更多
关键词 深度学习 头部姿态估计 repVGG模型 特征优化 特征提取 多尺度信息 融合损失
在线阅读 下载PDF
结合增量学习和大猩猩优化算法的GVMD-TSNE-TCN-LSTMre光伏发电功率短期预测方法
16
作者 张益鸣 张一竞 +2 位作者 杨子阳 李佳 钱晶 《太阳能学报》 北大核心 2025年第7期690-700,共11页
光伏短期发电数据维数高,特征复杂,数据特征的分解提取和预测模型的构建是影响预测效果的关键,该文提出一种结合增量学习的嵌入元启发大猩猩参数优化的光伏发电短期预测方法 GVMD-TSNE-TCN-LSTMre,第一层的特征提取采用变分模态分解(VMD... 光伏短期发电数据维数高,特征复杂,数据特征的分解提取和预测模型的构建是影响预测效果的关键,该文提出一种结合增量学习的嵌入元启发大猩猩参数优化的光伏发电短期预测方法 GVMD-TSNE-TCN-LSTMre,第一层的特征提取采用变分模态分解(VMD)和T分布随机近邻嵌入(TSNE)模型,二者结合获得光伏数据中的有效特征,其中VMD涉及惩罚因子和分解模态数两个关键参数的选择,采用元启发大猩猩优化算法(GTO)对其参数进行优化,获得优化特征提取方法(GVMD);第二层的预测模型构建,结合时序卷积神经网络(TCN)和长短期记忆网络(LSTM)建立TCN-LSTM预测模型,完成各特征的学习、叠加和重构,在此基础上采用增量学习的方法(GVMD-TSNE-TCN-LSTMre),基于参数冻结和全链接层更新的增量设计方法不断修改预测模型。最后,采用甘肃省某光伏场功率数据进行仿真验证,验证GVMD-TNSE数据处理的必要性、GTO参数优化算法对所选模型的时效性,以及整体模型的有效性。 展开更多
关键词 光伏发电 短期功率预测 增量学习 大猩猩优化算法 GVMD-TSNE特征分解提取 TCN-LSTM预测模型
在线阅读 下载PDF
AMFRel:一种中文电子病历实体关系联合抽取方法 被引量:3
17
作者 余肖生 李琳宇 +2 位作者 周佳伦 马洪彬 陈鹏 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第2期189-197,共9页
中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的... 中文电子病历实体关系抽取是构建医疗知识图谱,服务下游子任务的重要基础。目前,中文电子病例进行实体关系抽取仍存在因医疗文本关系复杂、实体密度大而造成医疗名词识别不准确的问题。针对这一问题,提出了基于对抗学习与多特征融合的中文电子病历实体关系联合抽取模型AMFRel(adversarial learning and multi-feature fusion for relation triple extraction),提取电子病历的文本和词性特征,得到融合词性信息的编码向量;利用编码向量联合对抗训练产生的扰动生成对抗样本,抽取句子主语;利用信息融合模块丰富文本结构特征,并根据特定的关系信息抽取出相应的宾语,得到医疗文本的三元组。采用CHIP2020关系抽取数据集和糖尿病数据集进行实验验证,结果显示:AMFRel在CHIP2020关系抽取数据集上的Precision为63.922%,Recall为57.279%,F1值为60.418%;在糖尿病数据集上的Precision、Recall和F1值分别为83.914%,67.021%和74.522%,证明了该模型的三元组抽取性能优于其他基线模型。 展开更多
关键词 关系抽取 联合抽取 对抗学习 多特征融合 关系重叠
在线阅读 下载PDF
烟草功能-结构模型GreenLab-Tobacco的构建 被引量:3
18
作者 徐照丽 孙艳 +4 位作者 吴茜 惠放 郭焱 杨宇虹 马韫韬 《中国烟草学报》 EI CAS CSCD 北大核心 2016年第3期52-59,共8页
为定量研究烟草生长和形态结构特点,构建准确描述烟株生长的功能-结构模型。基于烟株拓扑结构进行了田间原位动态观测和器官尺度生物量的破坏性测定,连续两年定量分析了不同烟草品种田间烟株的生长发育差异;基于源-库关系建立了烟草功能... 为定量研究烟草生长和形态结构特点,构建准确描述烟株生长的功能-结构模型。基于烟株拓扑结构进行了田间原位动态观测和器官尺度生物量的破坏性测定,连续两年定量分析了不同烟草品种田间烟株的生长发育差异;基于源-库关系建立了烟草功能-结构模型Green Lab-Tobacco,并对模型进行了初步校验。结果显示:光合生产的模拟值与实测值的均方根误差RMSE值在41.02~125.32 g·m^(-2)之间;分配到单个器官的生物量模拟值与实测值RMSE值在0.31~9.06 g·m^(-2),符合指数d值均在0.63以上,R^2均在0.68以上。该基于源-库关系的烟草功能-结构模型具有普遍适用性,可用于定量分析不同品种的烟草生长发育特征。 展开更多
关键词 烟草 形态结构 生物量 源/库关系 功能-结构模型
在线阅读 下载PDF
基于Geomagic Design Direct的截面特征提取与逆向建模 被引量:8
19
作者 蔡闯 成思源 +1 位作者 杨雪荣 张湘伟 《组合机床与自动化加工技术》 北大核心 2015年第9期42-44,共3页
当前逆向工程已成为一种消化、吸收先进技术,实现产品的创新设计和快速开发的重要技术手段。随着各种特征技术的不断发展和引进,基于特征的逆向建模方法逐渐成为逆向工程新的发展方向。根据已有的建模方法,提出一种在二维草图模式下截... 当前逆向工程已成为一种消化、吸收先进技术,实现产品的创新设计和快速开发的重要技术手段。随着各种特征技术的不断发展和引进,基于特征的逆向建模方法逐渐成为逆向工程新的发展方向。根据已有的建模方法,提出一种在二维草图模式下截面特征轮廓线提取与参数化设计的逆向建模新思路。并以Geomagic Design Direct软件为平台,实现了二维草图模式下特征轮廓线的提取与参数化再设计的逆向建模方法,为产品的快速建模和创新设计提供了一种新的途径。 展开更多
关键词 逆向工程 GEOMAGIC DESIGN DIreCT 截面特征 参数化建模
在线阅读 下载PDF
基于PAT TREE统计语言模型与关键词自动提取 被引量:12
20
作者 杨文峰 李星 《计算机工程与应用》 CSCD 北大核心 2001年第15期17-19,35,共4页
未登录关键词的识别是中文信息处理中的一个关键问题。文章利用PAT TREE实现了一种可变长统计语言模型,由于不存在n元统计语言模型的截断效应,从而对待提取的关键词的长度没有限制。在该模型的基础上,通过相关性检测,从540M汉语语... 未登录关键词的识别是中文信息处理中的一个关键问题。文章利用PAT TREE实现了一种可变长统计语言模型,由于不存在n元统计语言模型的截断效应,从而对待提取的关键词的长度没有限制。在该模型的基础上,通过相关性检测,从540M汉语语料中自动提取出了12万个关键词候选字串。最后,经过分析和筛选,候选字串的准确度由82.3%上升到96.1%。实验表明,基于PAT TREE的统计语言模型是实现未登录词提取的有力工具。 展开更多
关键词 信息检索 统计语言模型 关键词 自动提取 PATtree INTERNET
在线阅读 下载PDF
上一页 1 2 214 下一页 到第
使用帮助 返回顶部