Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitori...Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.展开更多
A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope, in order to solve the diffic...A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope, in order to solve the difficult problems in space gravity similitude of the experimental model on steep rock slope with weak layers. The experimental results on the Lianziya Precipice of the Yangtze Three Gorges are in general agreement with the field observations. The experimental method adopted is proved to be successful in molding the complex geological condition especially with the weak layers.展开更多
基金Project 1053G032 supported by the Youth Science Foundation of Educational Committee of Heilongjiang Province
文摘Monitoring the stability of steep slopes of open-pit mines is a major issue relating to production safety in mines.In order to determine the technical parameters of a new type of supervising system applied in monitoring steep slopes of open-pit mines,the MSARMA method was used to establish analytical models for the monitoring system,given various parameter settings based on the description of mechanical monitoring principles.We used this sensitivity analysis to conclude that the setting of the most sensitive location of a mechanical monitoring system should be within a range of 1/5~1/2 of the lower part in a vertical direction of steep slopes,with a rational and feasible range of the dip angle setting between 0°~20°.Given the analytical results of our on-site experiments,we have shown that the parameters determined reflect the stability of steep slopes accurately and effectively.These conclusions provide a basis for the application of a new type of steep slope stability monitoring technology in open-pit mines.
文摘A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope, in order to solve the difficult problems in space gravity similitude of the experimental model on steep rock slope with weak layers. The experimental results on the Lianziya Precipice of the Yangtze Three Gorges are in general agreement with the field observations. The experimental method adopted is proved to be successful in molding the complex geological condition especially with the weak layers.