期刊文献+
共找到120篇文章
< 1 2 6 >
每页显示 20 50 100
Adaptive multi-agent reinforcement learning for dynamic pricing and distributed energy management in virtual power plant networks
1
作者 Jian-Dong Yao Wen-Bin Hao +3 位作者 Zhi-Gao Meng Bo Xie Jian-Hua Chen Jia-Qi Wei 《Journal of Electronic Science and Technology》 2025年第1期35-59,共25页
This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards grea... This paper presents a novel approach to dynamic pricing and distributed energy management in virtual power plant(VPP)networks using multi-agent reinforcement learning(MARL).As the energy landscape evolves towards greater decentralization and renewable integration,traditional optimization methods struggle to address the inherent complexities and uncertainties.Our proposed MARL framework enables adaptive,decentralized decision-making for both the distribution system operator and individual VPPs,optimizing economic efficiency while maintaining grid stability.We formulate the problem as a Markov decision process and develop a custom MARL algorithm that leverages actor-critic architectures and experience replay.Extensive simulations across diverse scenarios demonstrate that our approach consistently outperforms baseline methods,including Stackelberg game models and model predictive control,achieving an 18.73%reduction in costs and a 22.46%increase in VPP profits.The MARL framework shows particular strength in scenarios with high renewable energy penetration,where it improves system performance by 11.95%compared with traditional methods.Furthermore,our approach demonstrates superior adaptability to unexpected events and mis-predictions,highlighting its potential for real-world implementation. 展开更多
关键词 Distributed energy management Dynamic pricing Multi-agent reinforcement learning Renewable energy integration Virtual power plants
在线阅读 下载PDF
Cognitive interference decision method for air defense missile fuze based on reinforcement learning 被引量:1
2
作者 Dingkun Huang Xiaopeng Yan +2 位作者 Jian Dai Xinwei Wang Yangtian Liu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期393-404,共12页
To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-lea... To solve the problem of the low interference success rate of air defense missile radio fuzes due to the unified interference form of the traditional fuze interference system,an interference decision method based Q-learning algorithm is proposed.First,dividing the distance between the missile and the target into multiple states to increase the quantity of state spaces.Second,a multidimensional motion space is utilized,and the search range of which changes with the distance of the projectile,to select parameters and minimize the amount of ineffective interference parameters.The interference effect is determined by detecting whether the fuze signal disappears.Finally,a weighted reward function is used to determine the reward value based on the range state,output power,and parameter quantity information of the interference form.The effectiveness of the proposed method in selecting the range of motion space parameters and designing the discrimination degree of the reward function has been verified through offline experiments involving full-range missile rendezvous.The optimal interference form for each distance state has been obtained.Compared with the single-interference decision method,the proposed decision method can effectively improve the success rate of interference. 展开更多
关键词 Cognitive radio Interference decision Radio fuze reinforcement learning Interference strategy optimization
在线阅读 下载PDF
Energy-Efficient Traffic Offloading for RSMA-Based Hybrid Satellite Terrestrial Networks with Deep Reinforcement Learning 被引量:1
3
作者 Qingmiao Zhang Lidong Zhu +1 位作者 Yanyan Chen Shan Jiang 《China Communications》 SCIE CSCD 2024年第2期49-58,共10页
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p... As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm. 展开更多
关键词 deep reinforcement learning energy efficiency hybrid satellite terrestrial networks rate splitting multiple access traffic offloading
在线阅读 下载PDF
Quafu-RL:The cloud quantum computers based quantum reinforcement learning 被引量:1
4
作者 靳羽欣 许宏泽 +29 位作者 王正安 庄伟峰 黄凯旋 时运豪 马卫国 李天铭 陈驰通 许凯 冯玉龙 刘培 陈墨 李尚书 杨智鹏 钱辰 马运恒 肖骁 钱鹏 顾炎武 柴绪丹 普亚南 张翼鹏 魏世杰 曾进峰 李行 龙桂鲁 金贻荣 于海峰 范桁 刘东 胡孟军 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期29-34,共6页
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate... With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform. 展开更多
关键词 quantum cloud platform quantum reinforcement learning evolutionary quantum architecture search
在线阅读 下载PDF
Automatic depth matching method of well log based on deep reinforcement learning
5
作者 XIONG Wenjun XIAO Lizhi +1 位作者 YUAN Jiangru YUE Wenzheng 《Petroleum Exploration and Development》 SCIE 2024年第3期634-646,共13页
In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep rei... In the traditional well log depth matching tasks,manual adjustments are required,which means significantly labor-intensive for multiple wells,leading to low work efficiency.This paper introduces a multi-agent deep reinforcement learning(MARL)method to automate the depth matching of multi-well logs.This method defines multiple top-down dual sliding windows based on the convolutional neural network(CNN)to extract and capture similar feature sequences on well logs,and it establishes an interaction mechanism between agents and the environment to control the depth matching process.Specifically,the agent selects an action to translate or scale the feature sequence based on the double deep Q-network(DDQN).Through the feedback of the reward signal,it evaluates the effectiveness of each action,aiming to obtain the optimal strategy and improve the accuracy of the matching task.Our experiments show that MARL can automatically perform depth matches for well-logs in multiple wells,and reduce manual intervention.In the application to the oil field,a comparative analysis of dynamic time warping(DTW),deep Q-learning network(DQN),and DDQN methods revealed that the DDQN algorithm,with its dual-network evaluation mechanism,significantly improves performance by identifying and aligning more details in the well log feature sequences,thus achieving higher depth matching accuracy. 展开更多
关键词 artificial intelligence machine learning depth matching well log multi-agent deep reinforcement learning convolutional neural network double deep Q-network
在线阅读 下载PDF
Reinforcement learning based adaptive control for uncertain mechanical systems with asymptotic tracking
6
作者 Xiang-long Liang Zhi-kai Yao +1 位作者 Yao-wen Ge Jian-yong Yao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期19-28,共10页
This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a larg... This paper mainly focuses on the development of a learning-based controller for a class of uncertain mechanical systems modeled by the Euler-Lagrange formulation.The considered system can depict the behavior of a large class of engineering systems,such as vehicular systems,robot manipulators and satellites.All these systems are often characterized by highly nonlinear characteristics,heavy modeling uncertainties and unknown perturbations,therefore,accurate-model-based nonlinear control approaches become unavailable.Motivated by the challenge,a reinforcement learning(RL)adaptive control methodology based on the actor-critic framework is investigated to compensate the uncertain mechanical dynamics.The approximation inaccuracies caused by RL and the exogenous unknown disturbances are circumvented via a continuous robust integral of the sign of the error(RISE)control approach.Different from a classical RISE control law,a tanh(·)function is utilized instead of a sign(·)function to acquire a more smooth control signal.The developed controller requires very little prior knowledge of the dynamic model,is robust to unknown dynamics and exogenous disturbances,and can achieve asymptotic output tracking.Eventually,co-simulations through ADAMS and MATLAB/Simulink on a three degrees-of-freedom(3-DOF)manipulator and experiments on a real-time electromechanical servo system are performed to verify the performance of the proposed approach. 展开更多
关键词 Adaptive control reinforcement learning Uncertain mechanical systems Asymptotic tracking
在线阅读 下载PDF
Deep Reinforcement Learning for Energy-Efficient Edge Caching in Mobile Edge Networks
7
作者 Meng Deng Zhou Huan +3 位作者 Jiang Kai Zheng Hantong Cao Yue Chen Peng 《China Communications》 SCIE CSCD 2024年第11期243-256,共14页
Edge caching has emerged as a promising application paradigm in 5G networks,and by building edge networks to cache content,it can alleviate the traffic load brought about by the rapid growth of Internet of Things(IoT)... Edge caching has emerged as a promising application paradigm in 5G networks,and by building edge networks to cache content,it can alleviate the traffic load brought about by the rapid growth of Internet of Things(IoT)services and applications.Due to the limitations of Edge Servers(ESs)and a large number of user demands,how to make the decision and utilize the resources of ESs are significant.In this paper,we aim to minimize the total system energy consumption in a heterogeneous network and formulate the content caching optimization problem as a Mixed Integer Non-Linear Programming(MINLP).To address the optimization problem,a Deep Q-Network(DQN)-based method is proposed to improve the overall performance of the system and reduce the backhaul traffic load.In addition,the DQN-based method can effectively solve the limitation of traditional reinforcement learning(RL)in complex scenarios.Simulation results show that the proposed DQN-based method can greatly outperform other benchmark methods,and significantly improve the cache hit rate and reduce the total system energy consumption in different scenarios. 展开更多
关键词 deep reinforcement learning edge caching energy consumption markov decision process
在线阅读 下载PDF
Deep Reinforcement Learning-Based Task Offloading and Service Migrating Policies in Service Caching-Assisted Mobile Edge Computing
8
作者 Ke Hongchang Wang Hui +1 位作者 Sun Hongbin Halvin Yang 《China Communications》 SCIE CSCD 2024年第4期88-103,共16页
Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.... Emerging mobile edge computing(MEC)is considered a feasible solution for offloading the computation-intensive request tasks generated from mobile wireless equipment(MWE)with limited computational resources and energy.Due to the homogeneity of request tasks from one MWE during a longterm time period,it is vital to predeploy the particular service cachings required by the request tasks at the MEC server.In this paper,we model a service caching-assisted MEC framework that takes into account the constraint on the number of service cachings hosted by each edge server and the migration of request tasks from the current edge server to another edge server with service caching required by tasks.Furthermore,we propose a multiagent deep reinforcement learning-based computation offloading and task migrating decision-making scheme(MBOMS)to minimize the long-term average weighted cost.The proposed MBOMS can learn the near-optimal offloading and migrating decision-making policy by centralized training and decentralized execution.Systematic and comprehensive simulation results reveal that our proposed MBOMS can converge well after training and outperforms the other five baseline algorithms. 展开更多
关键词 deep reinforcement learning mobile edge computing service caching service migrating
在线阅读 下载PDF
Network Defense Decision-Making Based on Deep Reinforcement Learning and Dynamic Game Theory
9
作者 Huang Wanwei Yuan Bo +2 位作者 Wang Sunan Ding Yi Li Yuhua 《China Communications》 SCIE CSCD 2024年第9期262-275,共14页
Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the informat... Existing researches on cyber attackdefense analysis have typically adopted stochastic game theory to model the problem for solutions,but the assumption of complete rationality is used in modeling,ignoring the information opacity in practical attack and defense scenarios,and the model and method lack accuracy.To such problem,we investigate network defense policy methods under finite rationality constraints and propose network defense policy selection algorithm based on deep reinforcement learning.Based on graph theoretical methods,we transform the decision-making problem into a path optimization problem,and use a compression method based on service node to map the network state.On this basis,we improve the A3C algorithm and design the DefenseA3C defense policy selection algorithm with online learning capability.The experimental results show that the model and method proposed in this paper can stably converge to a better network state after training,which is faster and more stable than the original A3C algorithm.Compared with the existing typical approaches,Defense-A3C is verified its advancement. 展开更多
关键词 A3C cyber attack-defense analysis deep reinforcement learning stochastic game theory
在线阅读 下载PDF
A Double-Timescale Reinforcement Learning Based Cloud-Edge Collaborative Framework for Decomposable Intelligent Services in Industrial Internet of Things
10
作者 Zhang Qiuyang Wang Ying Wang Xue 《China Communications》 SCIE CSCD 2024年第10期181-199,共19页
With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we p... With the proportion of intelligent services in the industrial internet of things(IIoT)rising rapidly,its data dependency and decomposability increase the difficulty of scheduling computing resources.In this paper,we propose an intelligent service computing framework.In the framework,we take the long-term rewards of its important participants,edge service providers,as the optimization goal,which is related to service delay and computing cost.Considering the different update frequencies of data deployment and service offloading,double-timescale reinforcement learning is utilized in the framework.In the small-scale strategy,the frequent concurrency of services and the difference in service time lead to the fuzzy relationship between reward and action.To solve the fuzzy reward problem,a reward mapping-based reinforcement learning(RMRL)algorithm is proposed,which enables the agent to learn the relationship between reward and action more clearly.The large time scale strategy adopts the improved Monte Carlo tree search(MCTS)algorithm to improve the learning speed.The simulation results show that the strategy is superior to popular reinforcement learning algorithms such as double Q-learning(DDQN)and dueling Q-learning(dueling-DQN)in learning speed,and the reward is also increased by 14%. 展开更多
关键词 computing service edge intelligence industrial internet of things(IIoT) reinforcement learning(RL)
在线阅读 下载PDF
Recorded recurrent deep reinforcement learning guidance laws for intercepting endoatmospheric maneuvering missiles
11
作者 Xiaoqi Qiu Peng Lai +1 位作者 Changsheng Gao Wuxing Jing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期457-470,共14页
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u... This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws. 展开更多
关键词 Endoatmospheric interception Missile guidance reinforcement learning Markov decision process Recurrent neural networks
在线阅读 下载PDF
Resource Allocation for Cognitive Network Slicing in PD-SCMA System Based on Two-Way Deep Reinforcement Learning
12
作者 Zhang Zhenyu Zhang Yong +1 位作者 Yuan Siyu Cheng Zhenjie 《China Communications》 SCIE CSCD 2024年第6期53-68,共16页
In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Se... In this paper,we propose the Two-way Deep Reinforcement Learning(DRL)-Based resource allocation algorithm,which solves the problem of resource allocation in the cognitive downlink network based on the underlay mode.Secondary users(SUs)in the cognitive network are multiplexed by a new Power Domain Sparse Code Multiple Access(PD-SCMA)scheme,and the physical resources of the cognitive base station are virtualized into two types of slices:enhanced mobile broadband(eMBB)slice and ultrareliable low latency communication(URLLC)slice.We design the Double Deep Q Network(DDQN)network output the optimal codebook assignment scheme and simultaneously use the Deep Deterministic Policy Gradient(DDPG)network output the optimal power allocation scheme.The objective is to jointly optimize the spectral efficiency of the system and the Quality of Service(QoS)of SUs.Simulation results show that the proposed algorithm outperforms the CNDDQN algorithm and modified JEERA algorithm in terms of spectral efficiency and QoS satisfaction.Additionally,compared with the Power Domain Non-orthogonal Multiple Access(PD-NOMA)slices and the Sparse Code Multiple Access(SCMA)slices,the PD-SCMA slices can dramatically enhance spectral efficiency and increase the number of accessible users. 展开更多
关键词 cognitive radio deep reinforcement learning network slicing power-domain non-orthogonal multiple access resource allocation
在线阅读 下载PDF
Decoding topological XYZ^(2) codes with reinforcement learning based on attention mechanisms
13
作者 陈庆辉 姬宇欣 +2 位作者 王柯涵 马鸿洋 纪乃华 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期262-270,共9页
Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum co... Quantum error correction, a technique that relies on the principle of redundancy to encode logical information into additional qubits to better protect the system from noise, is necessary to design a viable quantum computer. For this new topological stabilizer code-XYZ^(2) code defined on the cellular lattice, it is implemented on a hexagonal lattice of qubits and it encodes the logical qubits with the help of stabilizer measurements of weight six and weight two. However topological stabilizer codes in cellular lattice quantum systems suffer from the detrimental effects of noise due to interaction with the environment. Several decoding approaches have been proposed to address this problem. Here, we propose the use of a state-attention based reinforcement learning decoder to decode XYZ^(2) codes, which enables the decoder to more accurately focus on the information related to the current decoding position, and the error correction accuracy of our reinforcement learning decoder model under the optimisation conditions can reach 83.27% under the depolarizing noise model, and we have measured thresholds of 0.18856 and 0.19043 for XYZ^(2) codes at code spacing of 3–7 and 7–11, respectively. our study provides directions and ideas for applications of decoding schemes combining reinforcement learning attention mechanisms to other topological quantum error-correcting codes. 展开更多
关键词 quantum error correction topological quantum stabilizer code reinforcement learning attention mechanism
在线阅读 下载PDF
Deep Reinforcement Learning Based Joint Cooperation Clustering and Downlink Power Control for Cell-Free Massive MIMO
14
作者 Du Mingjun Sun Xinghua +2 位作者 Zhang Yue Wang Junyuan Liu Pei 《China Communications》 SCIE CSCD 2024年第11期1-14,共14页
In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinfo... In recent times,various power control and clustering approaches have been proposed to enhance overall performance for cell-free massive multipleinput multiple-output(CF-mMIMO)networks.With the emergence of deep reinforcement learning(DRL),significant progress has been made in the field of network optimization as DRL holds great promise for improving network performance and efficiency.In this work,our focus delves into the intricate challenge of joint cooperation clustering and downlink power control within CF-mMIMO networks.Leveraging the potent deep deterministic policy gradient(DDPG)algorithm,our objective is to maximize the proportional fairness(PF)for user rates,thereby aiming to achieve optimal network performance and resource utilization.Moreover,we harness the concept of“divide and conquer”strategy,introducing two innovative methods termed alternating DDPG(A-DDPG)and hierarchical DDPG(H-DDPG).These approaches aim to decompose the intricate joint optimization problem into more manageable sub-problems,thereby facilitating a more efficient resolution process.Our findings unequivo-cally showcase the superior efficacy of our proposed DDPG approach over the baseline schemes in both clustering and downlink power control.Furthermore,the A-DDPG and H-DDPG obtain higher performance gain than DDPG with lower computational complexity. 展开更多
关键词 cell-free massive MIMO CLUSTERING deep reinforcement learning power control
在线阅读 下载PDF
Task Offloading and Resource Allocation in NOMA-VEC:A Multi-Agent Deep Graph Reinforcement Learning Algorithm
15
作者 Hu Yonghui Jin Zuodong +1 位作者 Qi Peng Tao Dan 《China Communications》 SCIE CSCD 2024年第8期79-88,共10页
Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in im... Vehicular edge computing(VEC)is emerging as a promising solution paradigm to meet the requirements of compute-intensive applications in internet of vehicle(IoV).Non-orthogonal multiple access(NOMA)has advantages in improving spectrum efficiency and dealing with bandwidth scarcity and cost.It is an encouraging progress combining VEC and NOMA.In this paper,we jointly optimize task offloading decision and resource allocation to maximize the service utility of the NOMA-VEC system.To solve the optimization problem,we propose a multiagent deep graph reinforcement learning algorithm.The algorithm extracts the topological features and relationship information between agents from the system state as observations,outputs task offloading decision and resource allocation simultaneously with local policy network,which is updated by a local learner.Simulation results demonstrate that the proposed method achieves a 1.52%∼5.80%improvement compared with the benchmark algorithms in system service utility. 展开更多
关键词 edge computing graph convolutional network reinforcement learning task offloading
在线阅读 下载PDF
Policy Network-Based Dual-Agent Deep Reinforcement Learning for Multi-Resource Task Offloading in Multi-Access Edge Cloud Networks
16
作者 Feng Chuan Zhang Xu +2 位作者 Han Pengchao Ma Tianchun Gong Xiaoxue 《China Communications》 SCIE CSCD 2024年第4期53-73,共21页
The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC n... The Multi-access Edge Cloud(MEC) networks extend cloud computing services and capabilities to the edge of the networks. By bringing computation and storage capabilities closer to end-users and connected devices, MEC networks can support a wide range of applications. MEC networks can also leverage various types of resources, including computation resources, network resources, radio resources,and location-based resources, to provide multidimensional resources for intelligent applications in 5/6G.However, tasks generated by users often consist of multiple subtasks that require different types of resources. It is a challenging problem to offload multiresource task requests to the edge cloud aiming at maximizing benefits due to the heterogeneity of resources provided by devices. To address this issue,we mathematically model the task requests with multiple subtasks. Then, the problem of task offloading of multi-resource task requests is proved to be NP-hard. Furthermore, we propose a novel Dual-Agent Deep Reinforcement Learning algorithm with Node First and Link features(NF_L_DA_DRL) based on the policy network, to optimize the benefits generated by offloading multi-resource task requests in MEC networks. Finally, simulation results show that the proposed algorithm can effectively improve the benefit of task offloading with higher resource utilization compared with baseline algorithms. 展开更多
关键词 benefit maximization deep reinforcement learning multi-access edge cloud task offloading
在线阅读 下载PDF
Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network 被引量:17
17
作者 Ziying Wu Danfeng Yan 《China Communications》 SCIE CSCD 2021年第11期26-41,共16页
Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers... Multi-access Edge Computing(MEC)is one of the key technologies of the future 5G network.By deploying edge computing centers at the edge of wireless access network,the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios.Meanwhile,with the development of IOV(Internet of Vehicles)technology,various delay-sensitive and compute-intensive in-vehicle applications continue to appear.Compared with traditional Internet business,these computation tasks have higher processing priority and lower delay requirements.In this paper,we design a 5G-based vehicle-aware Multi-access Edge Computing network(VAMECN)and propose a joint optimization problem of minimizing total system cost.In view of the problem,a deep reinforcement learningbased joint computation offloading and task migration optimization(JCOTM)algorithm is proposed,considering the influences of multiple factors such as concurrent multiple computation tasks,system computing resources distribution,and network communication bandwidth.And,the mixed integer nonlinear programming problem is described as a Markov Decision Process.Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption,optimize computing offloading and resource allocation schemes,and improve system resource utilization,compared with other computing offloading policies. 展开更多
关键词 multi-access edge computing computation offloading 5G vehicle-aware deep reinforcement learning deep q-network
在线阅读 下载PDF
Deep Reinforcement Learning Based Joint Edge Resource Management in Maritime Network 被引量:13
18
作者 Fangmin Xu Fan Yang +1 位作者 Chenglin Zhao Sheng Wu 《China Communications》 SCIE CSCD 2020年第5期211-222,共12页
Due to the rapid development of the maritime networks, there has been a growing demand for computation-intensive applications which have various energy consumption, transmission bandwidth and computing latency require... Due to the rapid development of the maritime networks, there has been a growing demand for computation-intensive applications which have various energy consumption, transmission bandwidth and computing latency requirements. Mobile edge computing(MEC) can efficiently minimize computational latency by offloading computation tasks by the terrestrial access network. In this work, we introduce a space-air-ground-sea integrated network architecture with edge and cloud computing components to provide flexible hybrid computing service for maritime service. In the integrated network, satellites and unmanned aerial vehicles(UAVs) provide the users with edge computing services and network access. Based on the architecture, the joint communication and computation resource allocation problem is modelled as a complex decision process, and a deep reinforcement learning based solution is designed to solve the complex optimization problem. Finally, numerical results verify that the proposed approach can improve the communication and computing efficiency greatly. 展开更多
关键词 maritime network edge computing computation offload computation latency reinforcement learning deep learning
在线阅读 下载PDF
Reinforcement Learning-Based Joint Task Offloading and Migration Schemes Optimization in Mobility-Aware MEC Network 被引量:9
19
作者 Dongyu Wang Xinqiao Tian +1 位作者 Haoran Cui Zhaolin Liu 《China Communications》 SCIE CSCD 2020年第8期31-44,共14页
Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of... Intelligent edge computing carries out edge devices of the Internet of things(Io T) for data collection, calculation and intelligent analysis, so as to proceed data analysis nearby and make feedback timely. Because of the mobility of mobile equipments(MEs), if MEs move among the reach of the small cell networks(SCNs), the offloaded tasks cannot be returned to MEs successfully. As a result, migration incurs additional costs. In this paper, joint task offloading and migration schemes in mobility-aware Mobile Edge Computing(MEC) network based on Reinforcement Learning(RL) are proposed to obtain the maximum system revenue. Firstly, the joint optimization problems of maximizing the total revenue of MEs are put forward, in view of the mobility-aware MEs. Secondly, considering time-varying computation tasks and resource conditions, the mixed integer non-linear programming(MINLP) problem is described as a Markov Decision Process(MDP). Then we propose a novel reinforcement learning-based optimization framework to work out the problem, instead traditional methods. Finally, it is shown that the proposed schemes can obviously raise the total revenue of MEs by giving simulation results. 展开更多
关键词 MEC computation offloading mobility-aware migration scheme Markov decision process reinforcement learning
在线阅读 下载PDF
A deep reinforcement learning(DRL)based approach for well-testing interpretation to evaluate reservoir parameters 被引量:6
20
作者 Peng Dong Zhi-Ming Chen +1 位作者 Xin-Wei Liao Wei Yu 《Petroleum Science》 SCIE CAS CSCD 2022年第1期264-278,共15页
Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising t... Parameter inversions in oil/gas reservoirs based on well test interpretations are of great significance in oil/gas industry.Automatic well test interpretations based on artificial intelligence are the most promising to solve the problem of non-unique solution.In this work,a new deep reinforcement learning(DRL)based approach is proposed for automatic curve matching for well test interpretation,by using the double deep Q-network(DDQN).The DDQN algorithms are applied to train agents for automatic parameter tuning in three conventional well-testing models.In addition,to alleviate the dimensional disaster problem of parameter space,an asynchronous parameter adjustment strategy is used to train the agent.Finally,field applications are carried out by using the new DRL approaches.Results show that step number required for the DDQN to complete the curve matching is the least among,when comparing the naive deep Q-network(naive DQN)and deep Q-network(DQN).We also show that DDQN can improve the robustness of curve matching in comparison with supervised machine learning algorithms.Using DDQN algorithm to perform 100 curve matching tests on three traditional well test models,the results show that the mean relative error of the parameters is 7.58%for the homogeneous model,10.66%for the radial composite model,and 12.79%for the dual porosity model.In the actual field application,it is found that a good curve fitting can be obtained with only 30 steps of parameter adjustment. 展开更多
关键词 Well testing Deep reinforcement learning Automatic interpretation Parameter evaluation
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部