In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The mo...In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The model consists of two parts:the setting model based on CBR and the feedback compensation model based on IT2FR.The former presets the value of rehabilitation training program,and the latter carries on the feedback compensation of the preset value.Experimental results show that the average percentage error of two rehabilitation training programs is 0.074%.The two programs are made by the intelligent model and rehabilitation physician.That is,the two different programs are nearly identical.It means that the intelligent model can make a rehabilitation training program effectively and improve the rehabilitation efficiency.展开更多
In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts ...In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.展开更多
基金Project(2010020176-301)supported by Liaoning Science and Technology Program,ChinaProject(F10-2D5-1-57)supported by Shenyang Municipal Fund,China
文摘In view of the uncertainty and complexity,the intelligent model of rehabilitation training program for stroke was proposed,combining with the case-based reasoning(CBR) and interval type-2 fuzzy reasoning(IT2FR).The model consists of two parts:the setting model based on CBR and the feedback compensation model based on IT2FR.The former presets the value of rehabilitation training program,and the latter carries on the feedback compensation of the preset value.Experimental results show that the average percentage error of two rehabilitation training programs is 0.074%.The two programs are made by the intelligent model and rehabilitation physician.That is,the two different programs are nearly identical.It means that the intelligent model can make a rehabilitation training program effectively and improve the rehabilitation efficiency.
基金Project(61175128) supported by the National Natural Science Foundation of ChinaProject(2008AA040203) supported by the National High Technology Research and Development Program of ChinaProject(QC2010009) supported by the Natural Science Foundation of Heilongjiang Province,China
文摘In order to mitigate the effects of space adaptation syndrome(SAS) and improve the training efficiency of the astronauts, a novel astronaut rehabilitative training robot(ART) was proposed. ART can help the astronauts to carry out the bench press training in the microgravity environment. Firstly, a dynamic model of cable driven unit(CDU) was established whose accuracy was verified through the model identification. Secondly, to improve the accuracy and the speed of the active loading, an active loading hybrid force controller was proposed on the basis of the dynamic model of the CDU. Finally, the actual effect of the hybrid force controller was tested by simulations and experiments. The results suggest that the hybrid force controller can significantly improve the precision and the dynamic performance of the active loading with the maximum phase lag of the active loading being 9° and the maximum amplitude error being 2% at the frequency range of 10 Hz. The controller can meet the design requirements.