期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
基于GA-RELM多特征优选的烟叶多部位正反面识别方法 被引量:1
1
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
2
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (ELM) regularization theory cross validation neural networks.
在线阅读 下载PDF
基于RLMD-SE-CNN-RELM的水位预测混合模型研究
3
作者 张奇伟 刘月馨 +3 位作者 许雯 徐军杨 陈佳雷 张楚 《人民长江》 北大核心 2025年第3期116-125,133,共11页
精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史... 精准的水位预测在自然灾害预警、水资源管理和生态环境保护等领域具有重要应用价值。为此,提出了一种基于鲁棒局部均值分解(RLMD)、样本熵(SampEn)、卷积神经网络(CNN)和正则化极限学习机(RELM)的水位预测混合模型。首先利用RLMD对历史水位数据进行分解,引入样本熵方法对分量数据进行特征重组以减少数据量;然后利用CNN对重组数据进行特征提取以提高训练速度;最后利用RELM预测每个子序列,将预测结果叠加得到水位序列的最终预测值。以岷江流域下游高场水文站点1997~2020年的日水位数据为研究对象,对模型预测性能进行验证。结果表明:在未来1 d水位预测方面,所构建的混合模型与RELM、CNN-RELM、RLMD-CNN-RELM模型相比,准确度分别提升5.93%,5.91%,0.52%;3种不同预见期(1,2,3 d)下,混合模型预测结果的NSE分别为0.934657,0.932588,0.922955,预报精度均达到甲级。建立的RLMD-SE-CNN-RELM模型预测精度高,稳定性强,可为水位预测和水资源的精准调度提供参考。 展开更多
关键词 水位预测 鲁棒局部均值分解 样本熵 卷积神经网络 正则化极限学习机 岷江流域
在线阅读 下载PDF
基于WPT-IDBO-RELM和WPT-IDMO-RELM模型的日径流预测 被引量:3
4
作者 李菊 崔东文 《水利水电科技进展》 CSCD 北大核心 2024年第6期48-55,85,共9页
为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模... 为提高日径流时间序列预测精度,改进正则化极限学习机(RELM)的预测性能,对比验证改进蜣螂优化(IDBO)算法和改进侏獴优化(IDMO)算法与其他算法的优化效果,提出了基于小波包变换(WPT)的WPT-IDBO-RELM和WPT-IDMO-RELM日径流时间序列预测模型。对云南省暮底河水库、马鹿塘电站入库日径流进行预测,结果表明WPT-IDBO-RELM和WPT-IDMO-RELM模型对暮底河水库日径流预测的平均绝对百分比误差分别为1.048%、1.015%,对马鹿塘电站日径流预测的平均绝对百分比误差分别为1.493%、1.478%,优于其他对比模型;IDBO、IDMO算法对标准测试函数和实例目标函数的寻优效果均优于其他对比算法,且IDBO、IDMO算法优化效果越好,RELM超参数越优,WPT-IDBO-RELM、WPT-IDMO-RELM模型预测精度越高;WPT可将日径流序列分解为分量更少、规律性更强的子序列分量,在提高预测精度的同时显著降低模型复杂度和计算规模。 展开更多
关键词 日径流预测 正则化极限学习机 改进蜣螂优化算法 改进侏獴优化算法 小波包变换
在线阅读 下载PDF
基于MIC和IPSO-RELM的带钢热镀锌板锌层厚度预测 被引量:1
5
作者 方军 王兴东 +2 位作者 汪洋 吴宗武 丁健 《热加工工艺》 北大核心 2024年第22期62-68,82,共8页
针对带钢热镀锌板锌层厚度偏差易受产线多变量强耦合和测厚仪滞后时间长等因素影响的问题,提出一种基于最大信息系数(MIC)以及改进的粒子群算法优化正则化极限学习机(IPSO-RELM)的带钢锌层厚度预测方法。首先,采集生产过程数据进行相关... 针对带钢热镀锌板锌层厚度偏差易受产线多变量强耦合和测厚仪滞后时间长等因素影响的问题,提出一种基于最大信息系数(MIC)以及改进的粒子群算法优化正则化极限学习机(IPSO-RELM)的带钢锌层厚度预测方法。首先,采集生产过程数据进行相关预处理;然后,利用MIC法对各参数变量进行重要性排序,确定影响锌层厚度的关键因素;最后,将筛选的变量作为输入项建立RELM预测模型,并通过IPSO算法优化模型的随机性参数,有效提高了模型的稳定性和预测精度。结果表明:所建立模型预测结果的拟合决定系数R^(2)为94.66%,预测误差在-4~4 g/m^(2)的样本点命中率达到96%,且模型的3项评价指标均优于其他对比算法,证明了所提方法预测精度高,可为带钢热镀锌板产品质量的提升奠定基础。 展开更多
关键词 带钢热镀锌 锌层厚度预测 最大信息系数 改进的粒子群算法 正则化极限学习机
在线阅读 下载PDF
基于IMPA-RELM的旅游景点客流量预测研究
6
作者 占贻畅 秦喜文 +2 位作者 陈冬雪 董小刚 徐定鑫 《工程数学学报》 CSCD 北大核心 2024年第6期1133-1143,共11页
旅游景点客流量预测是旅游管理领域的重要研究问题,关乎着旅游政策制定和旅游景区经营管理。提出了一种基于改进海洋捕食者算法优化正则化极限学习机的旅游景点客流量预测方法。首先,为自适应地平衡探索与开发状态,提出一种基于群体多... 旅游景点客流量预测是旅游管理领域的重要研究问题,关乎着旅游政策制定和旅游景区经营管理。提出了一种基于改进海洋捕食者算法优化正则化极限学习机的旅游景点客流量预测方法。首先,为自适应地平衡探索与开发状态,提出一种基于群体多样性和群体聚集度的海洋捕食者算法,充分发挥MPA算法探索与开发性能。其次,将改进的海洋捕食者算法用于优化正则化极限学习机(IMPA-RELM)的权重与偏置,以归一化均方根误差作为适应度函数,确定最佳权重和偏置参数。最后,将所构建的IMPA-RELM模型应用于九寨沟和查干湖景区单日客流量预测研究。实验结果表明,所提出的IMPA-RELM模型不仅显著提升了RELM的模型性能,相比于LS-SVM、BPNN和LSTM等基线模型,也具有更强的预测性能与泛化能力,能够为景区运营管理和旅游政策制定提供重要参考。 展开更多
关键词 景点客流量预测 海洋捕食者算法 机器学习 正则化极限学习机 参数优化
在线阅读 下载PDF
基于颜色分割和PSO-RELM算法的花生种子筛选研究
7
作者 杨丽 薛亚许 +1 位作者 李鹏飞 彭信杰 《中国农机化学报》 北大核心 2024年第9期89-96,共8页
针对花生种子人工筛选存在工作量大、效率低等的问题,提出一种基于颜色分割和改进ELM的花生种子筛选算法。根据花生图像的聚类特性,采用限定RGB和HSV颜色空间中颜色范围的方法对花生图像进行颜色分割,获取花生种子图像目标区域。采用颜... 针对花生种子人工筛选存在工作量大、效率低等的问题,提出一种基于颜色分割和改进ELM的花生种子筛选算法。根据花生图像的聚类特性,采用限定RGB和HSV颜色空间中颜色范围的方法对花生图像进行颜色分割,获取花生种子图像目标区域。采用颜色、形状、改进HU矩特征对花生图像进行描述,结合改进HU矩平移、旋转和缩放不变性,对提取到的花生图像特征进行数量扩充,获得花生图像数据集。采用黄金分割法,确定隐含层神经元个数。引入正则化参数,提高ELM算法隐含层神经元与输出层之间连接权值矩阵的稳定性;采用PSO算法,获取最优输入权值和隐含层神经元阈值,构建PSO-RELM算法模型,并与BP、ELM、RELM算法进行比较。试验结果表明,PSO-RELM算法不仅对完好花生有很高的识别准确率(100%),还对破损花生也有很高的识别准确率(96.71%),平均测试时间为0.0068 s,均方根误差为0.0520,决定系数达0.9874,能够满足花生种子筛选的实时性要求。 展开更多
关键词 花生种子筛选 颜色分割 极限学习机 正则化参数 粒子群算法
在线阅读 下载PDF
基于CEEMDAN多尺度排列熵和SO-RELM的高压隔膜泵单向阀故障诊断 被引量:20
8
作者 李瑞 范玉刚 《振动与冲击》 EI CSCD 北大核心 2023年第5期127-135,共9页
高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研... 高压隔膜泵单向阀受负载、摩擦和冲击等因素的影响,运行产生的振动信号具有非平稳、非线性的特点,为了从振动信号中提取设备的非线性动力学特征,将多尺度排列熵(multi-scale permutation entropy, MPE)引入高压隔膜泵单向阀故障诊断研究。提取振动信号多尺度排列熵特征,用于建立结构优化正则化极限学习机(structure optimization regularized extreme learning machine, SO-RELM)故障诊断模型,模型利用K-means优化RELM结构,提高模型识别精确度及稳定性。首先采用自适应噪声完备经验模态分解(complementary ensemble empirical mode decomposition with adaptive noise, CEEMDAN)将高压隔膜泵单向阀振动信号自适应分解为多个固有模态分量(intrinsic mode function, IMF),以相关系数为指标,优选包含故障特征信息丰富的分量;然后,计算IMFs的多尺度排列熵值,提取信号的非线性动力学特征;最后,基于多尺度排列熵,建立基于SO-RELM的故障诊断模型。试验结果表明,CEEMDAN多尺度排列熵能够准确表征高压隔膜泵单向阀运行状态的非线性动力学特征,基于CEEMDAN多尺度排列熵建立的SO-RELM故障模型,能够有效识别高压隔膜泵单向阀工况类型,准确率达98.89%。 展开更多
关键词 自适应噪声完备经验模态分解 排列熵 结构优化正则化极限学习机 故障诊断
在线阅读 下载PDF
基于IHS_RELM的网络安全态势预测方法 被引量:3
9
作者 陈虹 王飞 肖振久 《计算机科学》 CSCD 北大核心 2013年第11期108-111,共4页
针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算... 针对网络安全态势感知中的态势预测问题,提出一种基于IHS_RELM的网络安全态势预测方法。对和声搜索算法的原理进行了研究,在此基础上提出一种改进的和声搜索算法。将正则极速学习机(RELM)嵌入到改进的和声搜索算法(IHS)的目标函数计算过程中,利用IHS算法的全局搜索能力来优化选取RELM的输入权值和隐含层阈值,在一定程度上提升了RLLM的学习能力和泛化能力。仿真实验表明,与已有的其他预测方法相比,该方法具有更好的预测效果。 展开更多
关键词 和声搜索算法 正则极速学习机 网络安全态势预测 参数优化
在线阅读 下载PDF
基于鱼群优化算法和Cholesky分解的RELM的基因表达数据分类 被引量:3
10
作者 陆慧娟 魏莎莎 +1 位作者 关伟 缪燕子 《计算机科学》 CSCD 北大核心 2014年第12期226-230,共5页
提出一种基于鱼群优化算法和Cholesky分解的改进的正则极限学习机算法(FSC-RELM)来对基因表达数据进行分类。FSC-RELM算法中,首先用鱼群优化算法对RELM输入层权值进行优化,其中目标函数定义为误差函数的倒数;再对RELM输出层权值矩阵进... 提出一种基于鱼群优化算法和Cholesky分解的改进的正则极限学习机算法(FSC-RELM)来对基因表达数据进行分类。FSC-RELM算法中,首先用鱼群优化算法对RELM输入层权值进行优化,其中目标函数定义为误差函数的倒数;再对RELM输出层权值矩阵进行分解,采用Cholesky分解法进行优化,以提高算法速度,减少训练时间。为了评价算法性能,对若干标准基因数据集进行了实验,结果表明,FSC-RELM算法在较短的时间内可以获得较高的分类精度,性能优异。 展开更多
关键词 鱼群优化 正则极限学习机 CHOLESKY分解 基因表达数据
在线阅读 下载PDF
基于快速自编码的RELM的文本分类 被引量:3
11
作者 周杭霞 叶佳骏 任欢 《计算机工程与科学》 CSCD 北大核心 2016年第5期871-876,共6页
正则化极限学习机RELM是一种单隐层前馈神经网络,不同于传统神经网络算法,RELM通过随机设置输入层权重和偏置值,可以快速求得输出层权重,并且引入正则化因子,能够提高模型的泛化能力。针对文本信息高维度、多类别的问题,提出一种基于快... 正则化极限学习机RELM是一种单隐层前馈神经网络,不同于传统神经网络算法,RELM通过随机设置输入层权重和偏置值,可以快速求得输出层权重,并且引入正则化因子,能够提高模型的泛化能力。针对文本信息高维度、多类别的问题,提出一种基于快速自编码的正则化极限学习机FARELM。将由RELM改进后的快速自编码神经网络对样本进行无监督特征学习,并对特征提取后的数据使用RELM进行分类。实验表明,FA-RELM的学习速度和分类精度较优。 展开更多
关键词 文本分类 特征提取 自动编码器 正则化极限学习机
在线阅读 下载PDF
基于优化FCM聚类的RELM风速预测 被引量:14
12
作者 潘超 秦本双 +2 位作者 何瑶 袁翀 沈清野 《电网技术》 EI CSCD 北大核心 2018年第3期842-848,共7页
准确的风速预测对大规模风电并网具有重要意义。提出一种基于互信息属性约简优化聚类的正则化极限学习机短期风速预测方法。首先考虑不同属性特征对风速的不同影响,计算风速特征属性序列与风速序列的互信息,并运用最大相关最小冗余算法... 准确的风速预测对大规模风电并网具有重要意义。提出一种基于互信息属性约简优化聚类的正则化极限学习机短期风速预测方法。首先考虑不同属性特征对风速的不同影响,计算风速特征属性序列与风速序列的互信息,并运用最大相关最小冗余算法进行特征选择,然后采用优化的模糊C均值聚类方法对风速样本进行聚类,再对极限学习机进行优化,进而构建风速组合预测模型。最后结合风电场实测数据进行风速预测实验,结果表明该方法具有较高的预测精度。 展开更多
关键词 风速预测 最大相关最小冗余 模糊C均值聚类 正则化 极限学习机
在线阅读 下载PDF
KLPP特征约简与RELM的高压隔膜泵单向阀故障诊断
13
作者 李瑞 范玉刚 张光辉 《机械科学与技术》 CSCD 北大核心 2023年第8期1332-1339,共8页
为此提出基于核局部保持投影(KLPP)和正则化极限学习机(RELM)的高压隔膜泵单向阀故障诊断方法。首先,提取单向阀振动信号的时域、频域、时频域特征,构建多域特征集;然后,通过KLPP算法对构建的多域特征集进行维数约简;最后,建立基于RELM... 为此提出基于核局部保持投影(KLPP)和正则化极限学习机(RELM)的高压隔膜泵单向阀故障诊断方法。首先,提取单向阀振动信号的时域、频域、时频域特征,构建多域特征集;然后,通过KLPP算法对构建的多域特征集进行维数约简;最后,建立基于RELM的故障诊断模型,用于识别单向阀运行状态。实验结果表明,基于多域特征的故障诊断方法检测精度高于单域特征识别方法;KLPP约简多域特征集,可以有效消除信息冗余;建立的RELM故障诊断模型识别精度达到98.89%,能够有效识别高压隔膜泵单向阀故障类型。 展开更多
关键词 单向阀 故障诊断 核局部保持投影 正则化极限学习机
在线阅读 下载PDF
基于RELM的时间序列数据加权集成分类方法 被引量:10
14
作者 赵林锁 陈泽 +1 位作者 丁琳琳 宋宝燕 《计算机工程与科学》 CSCD 北大核心 2022年第3期545-553,共9页
时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据... 时间序列数据通常是指一系列带有时间间隔的实值型数据,广泛存在于煤矿、金融和医疗等领域。为解决现有时间序列数据分类问题中存在的含有大量噪声、预测精度低和泛化性能差的问题,提出了一种基于正则化极限学习机(RELM)的时间序列数据加权集成分类方法。首先,针对时间序列数据中所含有的噪声,利用小波包变换方法对时间序列数据进行去噪处理。其次,针对时间序列数据分类方法预测精度低、泛化性能较差的问题,提出了一种基于RELM的加权集成分类方法。该方法通过训练正则化极限学习机(RELM)隐藏层节点数量的方法,有效选取RELM基分类器;通过粒子群优化(PSO)算法,对RELM基分类器的权值进行优化;实现对时间序列数据的加权集成分类。实验结果表明,该分类方法能够对时间序列数据进行有效分类,并提升了分类精度。 展开更多
关键词 时间序列数据 小波包 正则化极限学习机 集成分类 权值优化
在线阅读 下载PDF
基于SDAE与RELM的EEG情感识别方法 被引量:3
15
作者 连卫芳 晁浩 刘永利 《计算机工程》 CAS CSCD 北大核心 2021年第9期75-83,共9页
针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初... 针对情感识别中堆叠式自动编码器存在反向传播方法收敛速度慢和容易陷入局部最优的问题,提出一种基于堆叠式降噪自动编码器(SDAE)和正则化极限学习机(RELM)的情感状态识别方法。从脑电信号的时域、频域和时频域中提取表征情感状态的初始特征,使用SDAE进行无监督特征学习,提取初始特征的高层抽象表示。在网络的回归层,使用RELM进行情感分类。在DEAP数据集上的实验结果表明,与SDAE以及DT、KNN等传统基于机器学习的方法相比,该方法在实时性、准确性和泛化性能等方面均有明显提升。 展开更多
关键词 情感识别 脑电信号 情感特征 堆叠式降噪自动编码器 正则化极限学习机
在线阅读 下载PDF
基于近红外光谱的SSA-RELM的菠萝含水率快速检测 被引量:4
16
作者 赵艳莉 赵倩 李志强 《食品与机械》 CSCD 北大核心 2023年第11期79-86,共8页
目的:建立快速无损检测菠萝含水率的方法。方法:提出一种基于连续投影法的特征波长选择和麻雀搜索算法(SSA)优化正则化极限学习机(RELM)的菠萝含水率检测模型。针对菠萝近红外光谱数据具有维度高、冗余信息多的特点,分别对比连续投影法... 目的:建立快速无损检测菠萝含水率的方法。方法:提出一种基于连续投影法的特征波长选择和麻雀搜索算法(SSA)优化正则化极限学习机(RELM)的菠萝含水率检测模型。针对菠萝近红外光谱数据具有维度高、冗余信息多的特点,分别对比连续投影法、主成分分析法和全波段等筛选特征波长的结果,确定菠萝近红外光谱特征波长筛选方法;针对RELM模型性能受其输入层权值和隐含层偏置的影响,运用麻雀搜索算法优化RELM模型的输入层权值和隐含层偏置,提出一种基于麻雀搜索算法改进正则化极限学习机的菠萝含水率检测模型。结果:与遗传算法改进正则化极限学习机(GA-RELM)、粒子群算法改进正则化极限学习机(PSO-RELM)和RELM相比,基于麻雀算法改进正则化极限学习机(SSA-RELM)的菠萝含水率检测模型的检测精度最高。结论:麻雀搜索算法优化RELM模型可以有效提高RELM模型的菠萝含水率检测精度。 展开更多
关键词 近红外光谱 菠萝 含水率 正则化极限学习机 麻雀搜索算法 特征波长 连续投影法
在线阅读 下载PDF
基于PC-RELM的养殖水体溶解氧数据流预测模型 被引量:4
17
作者 施珮 匡亮 +1 位作者 王泉 袁永明 《农业工程学报》 EI CAS CSCD 北大核心 2023年第7期227-235,共9页
养殖水体中溶解氧浓度一直是最重要的水质参数之一。为了精准地对水体溶解氧进行调控,提高养殖生产效率,降低养殖风险,该研究考虑外部天气条件对溶解氧的影响以及溶解氧自身的昼夜变化特征,提出一种基于正则化极限学习机(principal comp... 养殖水体中溶解氧浓度一直是最重要的水质参数之一。为了精准地对水体溶解氧进行调控,提高养殖生产效率,降低养殖风险,该研究考虑外部天气条件对溶解氧的影响以及溶解氧自身的昼夜变化特征,提出一种基于正则化极限学习机(principal component analysis and clustering method optimized regularized extreme learning machine,PC-RELM)的养殖水体溶解氧数据流预测模型。首先,采用主成分分析法判断影响溶解氧浓度的强重要性因子,降低预测模型的数据维度;其次,利用熵权法计算各时刻点的天气环境指数,并利用快速动态时间规整算法(fast dynamic time warping,FastDTW)完成时间序列数据流在不同天气环境下的相似度度量;然后使用k-means算法对时间序列的相似度进行聚类分簇,并基于分簇结果完成正则化极限学习机预测模型的构建,实现溶解氧浓度的估算。最后将PC-RELM模型应用到无锡南泉试验基地养殖池塘的溶解氧预测调控过程中。试验结果表明:PC-RELM的预测均方根误差值(root mean square error,RMSE)为0.9619,与PLS-ELM(partial least squares optimized ELM)、最小二乘支持向量机(least square support vector machine,LSSVM)以及BP神经网络模型进行对比,其RMSE值分别降低了41.54%、54.58%和67.16%。该预测模型可以有效地捕捉不同天气条件下溶解氧的变化特点,具有较高的预测精度和效率。 展开更多
关键词 溶解氧 养殖 水质 聚类 快速动态时间规整算法 正则化极限学习机
在线阅读 下载PDF
基于特征选择的RELM风速短期预测 被引量:3
18
作者 王琦 秦本双 《可再生能源》 CAS 北大核心 2017年第8期1215-1220,共6页
准确的风速预测是风电场功率预测的基础,对大规模风电并网具有重要的价值。文章提出一种基于信息增益(IG)的正则化极限学习机(RELM)短期风速预测方法。首先采用信息增益对32维风速属性序列进行特征选择,并对其进行加权;然后将正则化系... 准确的风速预测是风电场功率预测的基础,对大规模风电并网具有重要的价值。文章提出一种基于信息增益(IG)的正则化极限学习机(RELM)短期风速预测方法。首先采用信息增益对32维风速属性序列进行特征选择,并对其进行加权;然后将正则化系数引入极限学习机(ELM)网络,构建RELM风速预测模型;最后结合美国风能技术中心的实测数据进行仿真,与传统ELM网络、BP神经网络相比,该方法具有较高的准确性和预测精度。 展开更多
关键词 风速预测 信息增益 皮尔逊系数 正则化 极限学习机
在线阅读 下载PDF
基于极限学习机的短期电力负荷在线预测 被引量:2
19
作者 杨凌 彭文英 +2 位作者 杨思怡 杜娟 程丽 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期637-644,共8页
为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输... 为满足智能电网对电力负荷实时预测的需求,提出基于稀疏递归最小二乘法的极限学习机(SRLS-ELM)在线学习算法,用于短期电力负荷的在线预测.相比在线序列ELM, SRLS-ELM算法无需选择离线样本初始化网络输出权重,将网络学习的平方误差与输出权值的稀疏正则化项相结合,用l1-范数稀疏化网络隐藏层节点,用次梯度策略解决求解过程中代价函数无法处处可微的问题,以递归最小二乘的训练方法完成在线学习,根据估计误差自适应寻找最优正则化参数.仿真结果表明,基于SRLS-ELM的算法能有效简化网络结构,且与ELM、堆叠核ELM批量、在线序列ELM半在线以及精确在线支持向量机回归模型相比,对短期电力负荷在线预测时具有更高的预测精度和学习效率,且鲁棒性强. 展开更多
关键词 短期电力负荷预测 极限学习机 在线学习 正则化
在线阅读 下载PDF
基于因果正则化极限学习机的风电功率短期预测方法 被引量:7
20
作者 杨茂 张书天 王勃 《电力系统保护与控制》 EI CSCD 北大核心 2024年第11期127-136,共10页
随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal reg... 随着风电并网比例的逐年提高,电力系统对风电功率预测的准确性和稳定性提出了更高要求。对于同一风电场而言,为了避免不同特征选择方法所选择的风电场特征子集不同,从因果关系的角度出发,提出了一种基于因果正则化极限学习机(causal regularized extreme learning machine, CRELM)的风电功率短期预测方法。首先将极限学习机(extreme learning machine, ELM)建模为结构因果模型(structural causal model, SCM),在此基础上计算隐藏层神经元与输出层神经元之间的平均因果效应向量。然后将该平均因果效应向量与输出层权重相结合构成因果正则化项,在最小化训练误差的同时最大化网络的因果关系,以进一步提升模型的预测准确性和预测稳定性。最后,以国内蒙西某风电场数据为例,与采用特征选择或不采用特征选择的预测模型相对比,验证了所提方法的有效性和适用性。 展开更多
关键词 特征选择 因果正则化 结构因果模型 平均因果效应向量 极限学习机
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部