期刊文献+
共找到221篇文章
< 1 2 12 >
每页显示 20 50 100
基于张量环子空间平滑与图正则的高光谱图像超分辨率方法研究
1
作者 杨飞霞 李正 马飞 《计算机科学》 北大核心 2025年第8期240-250,共11页
针对现有经典的矩阵分解模型会导致三维数据结构信息丢失,特别是受到噪声污染时重构图像质量严重下降等问题,提出了一种子空间平滑正则化与图正则相结合的高光谱与多光谱图像融合的方法,在保持立方体结构特征的同时利用流形结构与局部... 针对现有经典的矩阵分解模型会导致三维数据结构信息丢失,特别是受到噪声污染时重构图像质量严重下降等问题,提出了一种子空间平滑正则化与图正则相结合的高光谱与多光谱图像融合的方法,在保持立方体结构特征的同时利用流形结构与局部平滑特性来实现高光谱图像超分辨率的重建。首先,利用空间子空间与光谱子空间的局部自相似性,通过张量环因子构建空间图和光谱图来挖掘空间光谱流形结构,以提升重建图像质量;其次,引入子空间平滑正则化用于促进目标图像子空间的分段平滑;最后,设计一种高效的近端交替最小化算法对所提出的算法进行求解。在3个常用的实验数据集上进行的实验表明,所提出的模型不仅能改善空间细节和结构,在一定程度上还能抑制噪声。 展开更多
关键词 高光谱图像 高光谱与多光谱图像融合 张量环分解 图正则 子空间平滑正则化
在线阅读 下载PDF
图正则化弹性网子空间聚类
2
作者 郭书剑 余节约 尹学松 《计算机应用》 北大核心 2025年第5期1464-1471,共8页
基于图的子空间聚类(SC)已成为有效处理高维数据的流行技术。然而,现有方法存在以下问题:构建的图忽略了与聚类建立关联以及无法捕捉数据的内在相关结构。为了解决上述问题,提出一个新的SC方法——图正则化弹性网子空间聚类(GENSC)。GE... 基于图的子空间聚类(SC)已成为有效处理高维数据的流行技术。然而,现有方法存在以下问题:构建的图忽略了与聚类建立关联以及无法捕捉数据的内在相关结构。为了解决上述问题,提出一个新的SC方法——图正则化弹性网子空间聚类(GENSC)。GENSC使用L_(2)范数正则化强化具有相关结构的样本之间的连通性,并使用L_(1)范数正则化摒弃不同子空间的样本之间的连通性;同时,构建表征的最近邻图捕捉样本之间的内在局部结构,并增加秩约束以鼓励所学习的图具有清晰的聚类结构。GENSC将L_(2)范数、L_(1)范数和秩约束刻画到一个一般的框架中,并提出一个迭代的优化算法来求解该框架。在9个真实数据集上与现有方法进行比较的实验结果表明,在ChinaCXRSet上,GENSC的精确度(Accuracy)和归一化互信息(NMI)值分别超出次优方法9.03和7.61个百分点,聚类纯度(Purity)达到最好;在UMIST上,GENSC的精确度、NMI和Purity值分别超出次优方法4.15、3.17和5.21个百分点,验证了GENSC的有效性。 展开更多
关键词 机器学习 子空间聚类 图正则化 弹性网 秩约束
在线阅读 下载PDF
基于局部邻接图的半监督稀疏回归算法
3
作者 秦晓燕 郑晓晗 张莉 《南京师大学报(自然科学版)》 北大核心 2025年第4期96-105,共10页
半监督回归算法可以利用少量有标签样本和大量无标签样本进行回归建模,进而在一定程度上解决了获取标签样本成本高的问题.目前,已经提出了能利用邻接矩阵来挖掘数据潜在结构的图半监督回归算法.然而,这些方法存在两个问题.第一,现有半... 半监督回归算法可以利用少量有标签样本和大量无标签样本进行回归建模,进而在一定程度上解决了获取标签样本成本高的问题.目前,已经提出了能利用邻接矩阵来挖掘数据潜在结构的图半监督回归算法.然而,这些方法存在两个问题.第一,现有半监督回归算法多使用全连接的图生成方式,很容易受到噪声或离群点的影响;第二,现有图半监督回归算法的稀疏性不足.为了解决上述问题,本文提出了一种新的半监督回归学习算法——基于局部邻接图的半监督稀疏回归算法.该算法构建了一种新的局部邻接图,在生成邻接矩阵时仅关注样本的局部信息,从而保留了数据的局部流形结构,缓解噪声样本对算法的影响.另外,利用1范数正则能诱导稀疏性的特性,本文在优化问题中引入模型系数的1范数正则项,有效地提高了模型的稀疏性.本文在9个真实数据集上对算法的半监督回归性能和稀疏性进行了实验验证.实验结果表明,本文所提算法在不同实验设置下均能获得较好的回归性能. 展开更多
关键词 半监督回归学习 图生成 邻接矩阵 稀疏性 1范数正则
在线阅读 下载PDF
无迭代图胶囊网络的遥感场景分类
4
作者 杨顺 边小勇 陈希 《计算机应用》 北大核心 2025年第1期247-252,共6页
目前大多数胶囊网络方法通过改进迭代路由的方式提高分类精度,而忽略了迭代路由本身复杂的计算量带来的负担。虽然有方法采用无迭代的路由训练胶囊网络,但是精度不佳。针对以上问题,提出无迭代路由图胶囊网络的场景分类模型。首先,利用... 目前大多数胶囊网络方法通过改进迭代路由的方式提高分类精度,而忽略了迭代路由本身复杂的计算量带来的负担。虽然有方法采用无迭代的路由训练胶囊网络,但是精度不佳。针对以上问题,提出无迭代路由图胶囊网络的场景分类模型。首先,利用简单卷积层提取输入图像的初始特征;接着,提出通道和胶囊间双融合的全局注意力模块,通过依次进行通道和胶囊之间的注意力生成全局权重系数来加权高级胶囊特征,使加权后的高级胶囊特征更具判别性,以突出重要的胶囊,从而提高分类性能;同时,引入能计算图像间相似性的等变正则化项,以建模胶囊网络的显式等变性,从而潜在地提升网络性能;最后,基于边界损失和等变损失的组合损失函数训练整个网络,以得到富于判别性的分类模型。在多个基准场景数据集上的实验结果验证了所提方法的有效性和效率。实验结果表明,所提方法在加拿大高级研究所的10类图像数据集(CIFAR-10)上的分类准确率达到90.38%,与动态路由胶囊网络(DRCaps)方法相比,提高了15.74个百分点;并且在仿射手写数字图像(AffNIST)数据集和航空影像数据集(AID)上,分别取得了98.21%和86.96%的分类准确率。可见,所提方法有效提高了场景分类性能。 展开更多
关键词 遥感场景分类 图胶囊网络 无迭代路由 等变正则化
在线阅读 下载PDF
基于评分预测与图模型扩散的推荐方法
5
作者 王柳 陈学斌 +2 位作者 高远 马凯光 赵桐 《计算机应用研究》 北大核心 2025年第11期3284-3290,共7页
针对协同过滤算法存在数据稀疏性和局部推荐的问题,提出一种基于评分预测与图模型扩散的推荐方法SIRR。该推荐方法首先根据用户对物品的评分数量,设计算法动态切换机制预测用户对未评分物品的评分,从而解决数据稀疏性问题;其次,基于正... 针对协同过滤算法存在数据稀疏性和局部推荐的问题,提出一种基于评分预测与图模型扩散的推荐方法SIRR。该推荐方法首先根据用户对物品的评分数量,设计算法动态切换机制预测用户对未评分物品的评分,从而解决数据稀疏性问题;其次,基于正则化的余弦相似度提升了相似度计算的准确性和协同过滤算法的鲁棒性;最后,为解决局部推荐问题,通过图的加权随机游走扩展推荐范围,提高推荐的覆盖率。为平衡推荐的准确性和多样性,通过融合评分权重实现了优化。在两个不同类型的数据集上对正则化余弦相似度的有效性进行验证,在三个稀疏度不同的数据集上将所提方法与三种基线算法进行比较。仿真结果表明,SIRR与已有的推荐算法相比,在各指标上均表现出良好性能,为解决数据稀疏性和局部推荐问题提供了一种有效的解决方案。 展开更多
关键词 局部推荐 评分预测 正则化余弦相似度 图的加权随机游走 评分权重
在线阅读 下载PDF
多尺度去相关的图卷积网络模型
6
作者 陈丹阳 张长伦 《计算机应用》 北大核心 2025年第7期2180-2187,共8页
深度图神经网络(GNN)旨在捕捉复杂网络中的局部和全局特征,从而缓解图结构数据中的信息传递瓶颈。然而,现有的深度GNN模型常常面临特征过度相关的问题。因此,提出一种多尺度去相关图卷积网络(MultiDeprop)模型。该模型包含特征传播和特... 深度图神经网络(GNN)旨在捕捉复杂网络中的局部和全局特征,从而缓解图结构数据中的信息传递瓶颈。然而,现有的深度GNN模型常常面临特征过度相关的问题。因此,提出一种多尺度去相关图卷积网络(MultiDeprop)模型。该模型包含特征传播和特征变换两种操作。在特征传播操作中,引入多尺度去相关参数,以使网络在传播过程中维持低层网络的高去相关性以及高层网络的弱去相关性,从而适应不同层级特征处理的需求。在特征变换操作中,引入正交正则化与最大信息化损失,其中:正交正则化损失保持特征独立性,最大信息化则最大化输入和表示之间的互信息,从而降低特征信息的冗余。最后,在7个节点分类的数据集上把所提模型与4个基准模型进行对比实验。实验结果表明,Multi-Deprop模型在大多数的2~32层的模型中能取得更优的节点分类准确率。特别是在Cora数据集上,Multi-Deprop模型的4~32层网络模型准确率相较于基准模型Deprop提升了0.80%~13.28%,即MultiDeprop模型一定程度上解决了深层网络性能下降的问题。而在特征矩阵的相关性分析上,在Cora数据集上使用Multi-Deprop深层模型获得的特征矩阵相关性在0.40左右,即特征矩阵属于弱相关,说明Multi-Deprop模型极大地缓解了过相关现象。消融实验及损失可视化实验的结果表明,两个操作的改进均对模型性能有一定的提升作用。可见,Multi-Deprop模型能在保证高分类准确率的同时,显著降低深度网络中的特征冗余现象,具有较好的泛化性能和实用性。 展开更多
关键词 深度图神经网络 过度相关 L2正则化 最大信息化 多尺度去相关
在线阅读 下载PDF
Amply regular图的林-陆-丘曲率和直径
7
作者 李心田 刘世平 《中国科学技术大学学报》 CAS CSCD 北大核心 2021年第12期889-893,共5页
利用Hall匹配定理,研究了在不同参数限制条件下围长为3或4的amply regular图的林-陆-丘曲率下界估计.作为推论,我们证明每一个会议图均有正的林-陆-丘曲率.我们的方法在围长为4以及一些特殊的围长为3情形为amply regular图的一个经典直... 利用Hall匹配定理,研究了在不同参数限制条件下围长为3或4的amply regular图的林-陆-丘曲率下界估计.作为推论,我们证明每一个会议图均有正的林-陆-丘曲率.我们的方法在围长为4以及一些特殊的围长为3情形为amply regular图的一个经典直径估计提供了几何证明. 展开更多
关键词 amply regular 完美匹配 最优传输距离 林-陆-丘曲率
在线阅读 下载PDF
基于伽玛-泊松分布和图正则化的单细胞非负矩阵分解算法
8
作者 龙法宁 潘伟权 苏秀秀 《广西科学》 北大核心 2024年第5期925-938,共14页
单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓... 单细胞RNA测序(Single-cell RNA sequencing, scRNA-seq)可以获取单细胞水平的基因表达谱。然而,目前许多基于非负矩阵分解(Non-negative Matrix Factorization, NMF)的降维算法在细胞类型识别中往往忽视了数据概率分布和细胞之间的拓扑关系,无法较好地兼顾数据的全局结构和局部结构。为了克服传统NMF降维算法在处理高维含噪稀疏数据时的不足,本文提出一种改进的单细胞非负矩阵分解算法GPNMF。GPNMF结合了伽玛-泊松(Gamma-Poisson)分布假设和图正则化技术,通过迭代更新因子分解矩阵以最小化重构误差,从而有效地保留数据的局部结构与全局结构。通过引入约束优化并稳定化模型,GPNMF在分解单细胞表达数据时能够提供更为稳健和可靠的结果。最后,利用真实scRNA-seq数据进行实验,验证了GPNMF的有效性,并展示了其在单细胞基因表达数据轨迹推断分析中的潜在应用。 展开更多
关键词 单细胞RNA测序 降维 图正则化 伽玛-泊松分布 非负矩阵分解(NMF)
在线阅读 下载PDF
基于图拉普拉斯正则化的PET图像核重建方法
9
作者 盛玉霞 孙坤 柴利 《电子学报》 EI CAS CSCD 北大核心 2024年第1期118-128,共11页
正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深... 正电子发射断层成像(Positron Emission Tomography,PET)在很多疾病的早期诊断中有重要的作用,PET图像重建的难点之一是如何在保持重建图像中病灶边缘特性的同时具有良好的去噪性能.针对此问题,本文提出了一种结合图拉普拉斯正则化和深度图像先验的PET图像核重建方法 .设计了改进的U-net神经网络,将PET前向投影模型中的核系数表示为神经网络的输出;通过先验图像构建图拉普拉斯矩阵,重建问题被建模为基于神经网络的带图拉普拉斯正则化项的最大似然函数优化问题.利用优化转移方法导出了收敛的迭代重建算法,每一次迭代包括由核重建方法更新图像和利用神经网络更新核系数两个步骤.仿真和临床实验结果表明,本文提出的方法在不同的指标下都有更好的重建效果,优于已有核重建方法以及最新的基于深度系数先验的重建方法 . 展开更多
关键词 PET 图像重建 核方法 深度图像先验 图拉普拉斯正则化
在线阅读 下载PDF
基于最大相关熵准则的稀疏图半监督算法
10
作者 左玲 肖恒 《计算机工程与设计》 北大核心 2024年第11期3320-3328,共9页
针对传统图半监督算法对非高斯噪声敏感、图的构造依赖于参数选择、训练过程中未考虑数据隐私等问题,提出一种隐私保护性的、基于最大相关熵准则的稀疏图半监督算法。采用最大相关熵准则显著提高算法对极端值的鲁棒性。基于无参数的稀... 针对传统图半监督算法对非高斯噪声敏感、图的构造依赖于参数选择、训练过程中未考虑数据隐私等问题,提出一种隐私保护性的、基于最大相关熵准则的稀疏图半监督算法。采用最大相关熵准则显著提高算法对极端值的鲁棒性。基于无参数的稀疏图构造方式避免参数选择对算法的影响。采用Laplace差分隐私保护机制,保护数据隐私。运用交替方向乘子法和半二次优化获得算法的最优解。实验结果表明,相较于其它相关方法,该算法具有更高的预测准确性、稀疏性和隐私保护性。 展开更多
关键词 半监督学习 图正则化 最大相关熵准则 鲁棒性 稀疏性 隐私保护性 交替方向乘子法 半二次优化
在线阅读 下载PDF
稀疏分解和图拉普拉斯正则化的图像前景背景分割方法 被引量:1
11
作者 谭婷芳 蔡万源 蒋俊正 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第5期979-987,共9页
针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,... 针对现有图像前景背景分割方法的分割结果存在孤立像素点的问题,利用图信号处理理论和稀疏分解模型,提出新的图像前景背景分割方法.将图像的内在结构建模为图,通过图模型有效地刻画像素之间的内在关联性.将图像的像素强度建模为图信号,其中图像背景作为平滑分量,由一组图傅里叶变换基函数线性表示,叠加在背景上的前景为稀疏分量,前景像素间的连通性可由图拉普拉斯正则化项进行刻画.将图像前景背景分割问题归结为包含稀疏分解模型和图拉普拉斯正则化项的约束优化问题,采用交替方向乘子法对该优化问题进行求解.实验结果表明,与现有的其他方法相比,所提方法具有更好的分割效果. 展开更多
关键词 图信号处理 图拉普拉斯正则化 图傅里叶变换基函数 稀疏分解 前景背景分割
在线阅读 下载PDF
面向鲁棒图结构防御的过参数化图神经网络
12
作者 初旭 马辛宇 +4 位作者 林阳 王鑫 王亚沙 朱文武 梅宏 《软件学报》 EI CSCD 北大核心 2024年第8期3878-3896,共19页
图数据在现实应用中普遍存在,图神经网络(GNN)被广泛应用于分析图数据,然而GNN的性能会被图结构上的对抗攻击剧烈影响.应对图结构上的对抗攻击,现有的防御方法一般基于图内聚先验进行低秩图结构重构.但是现有的图结构对抗防御方法无法... 图数据在现实应用中普遍存在,图神经网络(GNN)被广泛应用于分析图数据,然而GNN的性能会被图结构上的对抗攻击剧烈影响.应对图结构上的对抗攻击,现有的防御方法一般基于图内聚先验进行低秩图结构重构.但是现有的图结构对抗防御方法无法自适应秩真值进行低秩图结构重构,同时低秩图结构与下游任务语义存在错配.为了解决以上问题,基于过参数化的隐式正则效应提出过参数化图神经网络(OPGNN)方法,并形式化证明所提方法可以自适应求解低秩图结构,同时证明节点深层表征上的过参数化残差链接可以有效解决语义错配.在真实数据集上的实验结果表明,OPGNN方法相对于现有基线方法具有更好的鲁棒性,同时,OPGNN方法框架在不同的图神经网络骨干上如GCN、APPNP和GPRGNN上显著有效. 展开更多
关键词 图节点半监督分类 图结构对抗防御 过参数化 隐式正则化 图神经网络
在线阅读 下载PDF
可交换图的一些注记 被引量:1
13
作者 吴寒 刘奋进 +2 位作者 尚凡琦 周艳红 阮昊桐 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第2期172-177,共6页
如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图... 如果存在一种顶点标号,使得2个简单图的邻接矩阵可交换,则称2个简单图可交换。首先,从图的Perron向量、主特征值数量、正则性三方面给出了可交换图的必要条件。然后,借助矩阵的克罗内克积、图的笛卡尔积及循环矩阵,构造了新的可交换图。最后,将一个邻接矩阵表示为另一个特征值互异的邻接矩阵的矩阵多项式,给出了2种算法,并比较了二者的优劣。可交换图存在公共的特征向量,对图谱理论研究具有重要意义。 展开更多
关键词 可交换图 正则图 循环图 克罗内克积 笛卡尔积
在线阅读 下载PDF
图终身学习:综述 被引量:1
14
作者 刘壮 董子宸 +8 位作者 董宜琳 尚家名 张帆 陈雨然 楼佩妍 孙欣然 王昱 赵军 Wayne Lin 《计算机研究与发展》 EI CSCD 北大核心 2024年第8期2067-2096,共30页
图终身学习(lifelong graph learning,LGL)是一个新兴领域,旨在实现对图结构数据的持续学习,以解决现有任务上的灾难性遗忘问题,并使得顺序更新的模型能够适应新出现的图任务.尽管LGL展现出良好的学习能力,但如何持续提高其性能仍然是... 图终身学习(lifelong graph learning,LGL)是一个新兴领域,旨在实现对图结构数据的持续学习,以解决现有任务上的灾难性遗忘问题,并使得顺序更新的模型能够适应新出现的图任务.尽管LGL展现出良好的学习能力,但如何持续提高其性能仍然是一个至关重要的问题.为填补现有研究对这一方面的空白,对最近在LGL领域的研究进行了全面调查和总结.首先,重新分类了LGL的现有方法,重点关注克服灾难性遗忘的方法.随后,系统地分析了这些方法的优缺点,并探讨了实现持续性能提升的潜在解决方案.该研究着重于如何在持续学习的过程中避免对旧任务的遗忘,同时快速适应新任务的挑战.最后,还就LGL的未来发展方向进行了讨论,涵盖了其在应用领域、开放性问题等方面的潜在影响,并具体分析了这些方向对持续性能改进的潜在影响.这些讨论将有助于指导未来LGL研究的方向,推动这一领域的进一步发展与应用. 展开更多
关键词 图终身学习(LGL) 图神经网络(GNN) 重放 正则化 持续学习 增量学习 灾难性遗忘
在线阅读 下载PDF
采用多任务特征融合的脑电情绪识别方法 被引量:1
15
作者 刘柯 黄玉柱 +1 位作者 邓欣 于洪 《智能系统学报》 CSCD 北大核心 2024年第3期610-618,共9页
特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过L_(2,1)范数约束实现稀疏特征选择... 特征选择与融合是提升脑电信号情绪解码精度的重要手段之一。然而,当前脑电情绪解码中的特征选择方法常忽略了脑电信号内在数据结构的隐含信息。该文提出一种基于近邻传播聚类的多任务特征融合方法,通过L_(2,1)范数约束实现稀疏特征选择,同时利用图拉普拉斯正则化保持不同子类间的潜在关系。该算法在不揭示真实样本标签的情况下,在子任务空间有效融合脑网络空间拓扑结构信息和微分熵信息,为高精度脑电信号情绪解码提供具有更高情绪表征能力的特征。DEAP和SEED数据集以及本实验室数据集的分析结果表明,该文提出的方法能显著提高脑电情绪解码的精度。 展开更多
关键词 情感脑机接口 脑电情绪识别 脑网络 微分熵 近邻传播聚类 图拉普拉斯正则 多任务特征融合 稀疏特征选择
在线阅读 下载PDF
基于倒排索引的正则路径查询算法 被引量:1
16
作者 夏秀峰 孙翔天 +3 位作者 孙尧 邓国鹏 朱康 邱涛 《计算机工程与设计》 北大核心 2024年第8期2343-2349,共7页
对于图数据上的正则路径查询(regular path query, RPQ)问题,其使用正则表达式定义图中两个节点之间的约束。针对现有的RPQ在图上遍历匹配方法效率低下这一问题,提出一种基于倒排索引的RPQ算法,在图上构建标签的倒排索引,匹配过程中快... 对于图数据上的正则路径查询(regular path query, RPQ)问题,其使用正则表达式定义图中两个节点之间的约束。针对现有的RPQ在图上遍历匹配方法效率低下这一问题,提出一种基于倒排索引的RPQ算法,在图上构建标签的倒排索引,匹配过程中快速检索标签的相应倒排列表。设计的IRPQ算法将查询转化为面向倒排列表的查询计划树,经过优化以减少冗余列表合并操作。在真实数据集上进行了实验,其结果表明,IRPQ及其优化算法相比现有方法显著提高了查询性能。 展开更多
关键词 属性图模型 正则路径查询 倒排索引 查询计划树 树结构递归 启发式算法 查询树优化
在线阅读 下载PDF
基于图正则化约束频域组稀疏模型的风电机组滚动轴承故障诊断
17
作者 李继猛 王泽 +1 位作者 史清心 孟宗 《中国机械工程》 EI CAS CSCD 北大核心 2024年第11期1909-1919,共11页
风电机组的非平稳运行、嘈杂环境以及强电磁干扰等影响,使得滚动轴承故障脉冲易被强噪声淹没,微弱特征难以准确识别。提出了一种图正则化约束的频域组稀疏模型,在不依赖周期先验的前提下,实现滚动轴承故障特征的有效提取。将振动信号转... 风电机组的非平稳运行、嘈杂环境以及强电磁干扰等影响,使得滚动轴承故障脉冲易被强噪声淹没,微弱特征难以准确识别。提出了一种图正则化约束的频域组稀疏模型,在不依赖周期先验的前提下,实现滚动轴承故障特征的有效提取。将振动信号转化成图信号以构造图正则化约束,利用结构化信息指导惩罚力度,提高稀疏重构的准确性;构建图正则化约束的频域组稀疏模型,给出了组内分量收缩阈值的确定方法,并利用近端映射来简化目标函数以优化求解;最后,利用构造的综合评价指标和蛾焰优化算法优化模型参数,通过对重构后时域稀疏信号的包络谱分析识别滚动轴承故障。数值仿真和实验结果表明,所提方法具有良好的抗噪性能,能够有效地提取强噪声干扰下滚动轴承的微弱故障特征。 展开更多
关键词 风电机组滚动轴承 故障诊断 组稀疏 图正则化
在线阅读 下载PDF
基于一致引导的不完全多视图聚类
18
作者 安萍 彭军龙 《计算机应用与软件》 北大核心 2024年第5期254-263,共10页
为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,... 为了解决传统聚类方法存在的效果差、泛化能力弱等问题,提出一种基于一致引导的不完全多视图聚类方法。将图学习和一致性表示学习集成到一个联合框架中,从而充分利用多视图数据信息。引入的自适应学习权值向量可以平衡不同视图的影响,联合正则化表示学习策略则为一致表示学习提供了更大的自由度。提出交替迭代优化算法对聚类进行优化。在七个数据集上的实验结果表明,提出的方法能够有效提升不完全多视图聚类的效果。 展开更多
关键词 多视图聚类 一致引导 图学习 正则化 自适应
在线阅读 下载PDF
超像素分割和波段分割的高光谱图像去噪
19
作者 李华君 蒋俊正 +1 位作者 周芳 全英汇 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2024年第5期122-135,共14页
针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素... 针对现有的高光谱图像去噪算法采用逐波段或者全波段方式去噪,未能充分利用高光谱图像波段相似性的问题,提出了超像素分割和波段分割的高光谱图像去噪算法。文中将构建双层图模型,包括上层图和下层图模型。首先,对高光谱图像应用超像素分割技术,得到一系列的超像素。对超像素内的像素建模为节点,像素之间用边连接,构建一系列下层图,从而充分利用高光谱图像的空间信息和保留边界信息。根据超像素分割结果,沿着波段维分割,形成超像素体,以充分利用高光谱图像的波段相似性。将超像素体建模为节点,超像素体之间用边连接,构建上层图。基于构建的图结构和图分割方式,将高光谱图像去噪问题归结为一系列的优化问题,在优化问题中利用克罗内克乘积图重新定义了图拉普拉斯正则项。最后,实验结果表明,与现有算法相比,文中所提算法具有更高的平均峰值信噪比、平均结构相似性和光谱差异性。 展开更多
关键词 高光谱图像去噪 图信号处理 超像素分割 波段分割 图拉普拉斯正则项
在线阅读 下载PDF
三正则构造图的邻点全和可区别全染色
20
作者 杨超 程银万 姚兵 《吉林大学学报(理学版)》 CAS 北大核心 2024年第6期1301-1307,共7页
首先,根据Snark图的结构特点,构造基于双星和十字交叉形的两类三正则图;其次,利用穷染法和组合分析法研究四类三正则构造图的邻点全和可区别全染色问题,得到了它们的邻点全和可区别全色数均为2.
关键词 非正常全染色 邻点全和可区别全染色 邻点全和可区别全色数 三正则图
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部