期刊文献+
共找到254篇文章
< 1 2 13 >
每页显示 20 50 100
基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割
1
作者 郑宗生 高萌 +3 位作者 周文睆 王政翰 霍志俊 张月维 《自然资源遥感》 北大核心 2025年第2期11-18,共8页
针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-... 针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-scale dense connected atrous spatial convolution pyramid pooling module, MDCA)和条形池化(spatial pyramid pooling, SP)提取多尺度和空间连续性地物;利用特征增强双注意力并联模块(position paralleling channel attention module, PPCA)衡量特征权重,实现高效表达;采用浅层特征级联模块(cascade low-level feature fusion, CLFF)捕捉被忽略的浅层特征,进一步补充细节。实验结果表明:DMS-Net模型在迭代扩充数据集上的总体精度(overall accuracy, OA)达到89.97%,平均交并比(mean intersection over union, mIoU)达到75.59%,高于传统机器学习方法及U-Net, PSPNet, Deeplabv3+等深度学习模型。分割结果显示,地物结构完整且边缘分割明晰,在实现多尺度的土地覆盖遥感信息提取分析中具有较好的实用价值。 展开更多
关键词 深度学习 全卷积神经网络 多尺度 语义分割 土地覆盖
在线阅读 下载PDF
基于改进FCN的路侧激光雷达可行驶空间检测
2
作者 朱进玉 杨若楠 +3 位作者 鲍宇健 张凯 唐尔迪 汪贵平 《激光杂志》 北大核心 2025年第1期97-105,共9页
为了提高道路检测的精度,提出了一种基于改进全卷积神经网络(FCN)的路侧激光雷达可行驶空间检测方法。首先,通过建立环形栅格图并统计栅格内的点云信息,生成二维俯视图;然后,在FCN中引入混合膨胀卷积以替换标准卷积,并在池化层后添加空... 为了提高道路检测的精度,提出了一种基于改进全卷积神经网络(FCN)的路侧激光雷达可行驶空间检测方法。首先,通过建立环形栅格图并统计栅格内的点云信息,生成二维俯视图;然后,在FCN中引入混合膨胀卷积以替换标准卷积,并在池化层后添加空间特征对齐模块,在卷积层后添加通道特征对齐模块,从而构建HCS-FCN。在自主构建的16线路侧激光雷达道路数据集和32线路侧激光雷达道路数据集上,将HCS-FCN与传统的FCN和SegNet进行对比实验。实验结果显示,HCS-FCN的F_(1)分数在16线数据集和32线数据集上分别达到88.4%和89.2%;平均像素准确率在16线数据集和32线数据集上分别达到89.1%和89.7%;平均像素交并比在16线数据集和32线数据集上分别达到87.3%和88.9%;均优于传统FCN和SegNet。 展开更多
关键词 辅助驾驶 路侧激光雷达 可行驶空间 全卷积神经网络
在线阅读 下载PDF
信号分离在深海定位中的应用
3
作者 袁博 钱鹏 +2 位作者 赵猛 杨馥锦 鹿力成 《应用声学》 北大核心 2025年第1期155-161,共7页
声波在深海中远距离传播时海水吸收、扩展导致传播损失大,接收到的声波能量非常小,同时受到航船风浪等强噪声干扰,声波信号的信噪比非常低。在低信噪比的情况下,信号增强、信号降噪等数据处理方法的效果均降低,对水下目标定位、检测和... 声波在深海中远距离传播时海水吸收、扩展导致传播损失大,接收到的声波能量非常小,同时受到航船风浪等强噪声干扰,声波信号的信噪比非常低。在低信噪比的情况下,信号增强、信号降噪等数据处理方法的效果均降低,对水下目标定位、检测和识别造成很大影响。该文针对水下目标低信噪比定位问题,应用全卷积时域网络,基于信号幅度和相位的解耦,提出了一种快速信噪分离方法。该方法利用了端到端时域分离的深度学习框架,通过线性编码器编码信号,编码之后的信号波形可以通过一组加权函数分离出信号和噪声,最后再使用线性编码器将分离后的信号反转到时域进行目标定位。通过数据仿真验证了该方法的可行性,并对海上实验数据进行处理,取得较好结果。 展开更多
关键词 全卷积时域网络 信噪分离 被动定位系统 深海定位
在线阅读 下载PDF
基于全连接时空图的短期电力负荷预测方法
4
作者 徐智远 缪卓窈 +3 位作者 龙卓 吴公平 邓丰 邓乐 《电力科学与技术学报》 北大核心 2025年第3期123-132,共10页
短期负荷预测是电力系统中的一项重要任务。目前,对多序列负荷之间的时空邻接关系的研究较少,而一定情况下考虑这种时空邻接性可以提高预测的准确性。为此,提出一种基于全连接图的图卷积神经网络(fully-connected graph based graph con... 短期负荷预测是电力系统中的一项重要任务。目前,对多序列负荷之间的时空邻接关系的研究较少,而一定情况下考虑这种时空邻接性可以提高预测的准确性。为此,提出一种基于全连接图的图卷积神经网络(fully-connected graph based graph convolution neural network,FCGCN)。首先,FCGCN将多序列负荷数据编码成图的节点特征矩阵,结合位置编码的方法增加负荷数据的顺序信息,并利用动态时间规整(dynamic time warping,DTW)算法构建图的邻接矩阵,从而形成负荷数据的全连接时空图;然后,结合滑动窗口算法思想,将构建的全连接图连续分割为一系列子图,再利用图卷积神经网络(graph convolution neural network,GCN)对每个子图单独进行特征提取;其次,为了实现对多源负荷数据的多角度特征提取,FCGCN采用多分支并行结构,将每个分支提取的特征向量串联,并通过全连接层完成对不同负荷的预测;最后,利用来自某生产基地的实际负荷数据进行验证实验。结果表明:与常见的预测模型相比,FCGCN能取得更高的预测精度。 展开更多
关键词 电力系统 多源负荷数据 短期负荷预测 全连接时空图 图卷积神经网络
在线阅读 下载PDF
全卷积定位神经网络在两个地震相互干扰情形下的应用
5
作者 陈慧慧 张雄 +1 位作者 田宵 张伟 《地球物理学报》 北大核心 2025年第1期139-152,共14页
台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个... 台站连续记录的弱余震或微震数据中经常会遇到两个地震发生的时间比较接近,波形存在互相干扰的情况,给震相拾取和关联等处理造成困难,进而影响地震定位结果.近年来,人们开始探索使用深度学习方法直接从波形数据中定位地震,但鲜有对两个波形相互干扰的地震进行定位的情况.本研究基于全卷积神经网络模型,采用叠加两个高斯概率分布的方法,同时标记两个地震,使得同一时窗内存在两个波形相互干扰的地震事件时,神经网络能够同时定位两个地震事件.我们将该方法应用于美国南加州的Ridgecrest地震序列和样本,研究发现输入时窗只包含一个地震事件时,实际数据定位平均误差为2.8 km,当输出标签包含两个地震时,我们利用输出标签减去其中一个地震位置波峰的方法提取出两个地震的位置,估算出的干扰地震事件定位平均误差为7.9 km (定位范围89 km×72 km,包含了位置提取方法的误差).测试表明,该方法对两个波形相互干扰的地震进行定位具有一定的效果,对多事件相互干扰的定位研究具有一定启发意义,从而进一步提高地震监测的完备性. 展开更多
关键词 地震定位 相互干扰 全卷积神经网络
在线阅读 下载PDF
基于多分支结构的手写字图像特征提取自适应算法
6
作者 郭晓静 赵小源 邹松林 《工程科学与技术》 北大核心 2025年第3期247-255,共9页
飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用... 飞机地面维护工卡是维修操作和归档的重要依据,分步完成其手工填写和数字化存储具有重要价值。为减少飞机运行安全隐患,受行业规范限制,工卡通常设计成可离线部署工作的识别模型。工卡书写不但字符类别数目多,还存在大量汉字、英文混用情形,导致字符特征提取困难且识别精度不高。为了针对性地提升平均识别准确率和速度,减少结构相似字、结构复杂字等的错误识别,本文提出一种多分支卷积与特征融合提取结构。利用深层卷积的多尺度特征提取优势,引入改进的重参数化多分支结构来改善图像全局、局部特征提取效果;采用全卷积实现区域空间特征与图像深层特征融合,在分类过程中,提出融合全卷积分类器结构,依据字符特征复杂程度不同自适应分类,改善相似字与复杂字类间、类内的分类识别效果。与主流的手写字识别方法相比,改进后网络结构的存储大小为69.1 MB;在汉字数据集上的实验表明,识别精度与速度均大幅提升,模型首次预测准确率和前5次预测准确率分别达到97.50%和99.79%。模型对相似字符、中英文字符的识别模型优势明显,在包含了中英文和数字的数据集上,改进后结构存储大小为69.2 MB,实验结果中首次预测准确率达到97.23%,推理速度达到1 400张/s,对飞机地面维护工卡识别等特定领域有一定价值。 展开更多
关键词 脱机手写汉字识别 全卷积 重参数化结构 空间特征融合 重参数化多分支卷积算法
在线阅读 下载PDF
基于全卷积网络的复杂背景红外弱小目标检测研究 被引量:1
7
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 全卷积网络 红外弱小目标 检测精度 提取特征
在线阅读 下载PDF
基于LSTM-SAFCN模型的生物质锅炉NO_(x)排放浓度预测 被引量:1
8
作者 何德峰 刘明裕 +2 位作者 孙芷菲 王秀丽 李廉明 《高技术通讯》 CAS 北大核心 2024年第1期92-100,共9页
针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓... 针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓度预测的影响;其次融合自注意力机制与长短时记忆-全卷积神经网络(LSTM-FCN)进行特征提取与预测建模,该拓展方法能够同时兼顾时间序列数据的局部细节与长期趋势特征;最后,利用生物质热电联产系统的实际运行数据验证了所提算法的有效性。 展开更多
关键词 生物质锅炉 NO_(x)排放浓度预测 经验模态分解 长短时记忆-全卷积神经网络(LSTM-FCN) 自注意力机制
在线阅读 下载PDF
基于全卷积神经网络多任务学习的时域语音分离
9
作者 孙林慧 王春艳 张蒙 《信号处理》 CSCD 北大核心 2024年第12期2228-2237,共10页
基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Net... 基于深度神经网络时频掩码进行语音分离时,目标信号相位一般采用混合信号的相位谱,且对性别组合缺乏针对性处理,这导致分离语音的质量不佳。针对该问题,本文提出一种基于全卷积神经网络联合性别组合检测(Fully Convolutional Neural Network-Gender Combination Detection,FCN-GCD)多任务学习的时域语音分离方法。该方法首先在语音分离支路构建全卷积神经网络,该网络的输入为时域两人混合语音信号,输出为目标讲话者的纯净语音信号,运用卷积编码器和反卷积解码器对特征进行压缩和重建,实现端到端的语音分离。其次将混合语音性别组合检测任务整合到语音分离网络中,在两个任务联合约束下获取辅助信息特征和语音分离特征,并将这些深度特征相结合来提升语音分离质量。该FCN-GCD方法是一种时域语音分离方法,不需要进行相位恢复和频域到时域的重构,相比频域处理方法,该处理过程简单,从而提高了运算效率。另外,该方法从混合语音性别组合检测任务中提取有效的辅助信息特征,利用联合特征实现了更有效的语音分离。实验结果表明,与单任务的语音分离方法相比,本文所提出的FCN-GCD方法在男男、女女和男女三种性别组合下均有效提高了语音质量,在语音质量感知评估(Perceptual Evaluation of Speech Quality,PESQ)、短时客观可懂度(Short-Time Objective Intelligibility,STOI)、信号干扰比(Signalto-Interference Ratio,SIR)、信号失真比(Signal-to-Distortion Ratio,SDR)和信号伪像比(Signal-to-Artifact Ratio,SAR)评价指标上均获得更佳的表现。 展开更多
关键词 深度神经网络 语音分离 全卷积神经网络 特征融合 多任务学习
在线阅读 下载PDF
集成多种上下文与混合交互的显著性目标检测 被引量:2
10
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
在线阅读 下载PDF
一种基于全卷积神经网络的空中目标战术意图识别模型 被引量:3
11
作者 李乐民 宋亚飞 +1 位作者 王鹏 王科 《空军工程大学学报》 CSCD 北大核心 2024年第5期98-106,共9页
针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战... 针对现有空中目标识别方法敏捷性和可靠度不够高的问题,研究设计了一种深度学习模型MLSTM-FCN,结合了全卷积神经网络、循环神经网络和压缩与激励模块的优点。全卷积网络能够提取空战数据中的复杂局部特征,长短记忆神经网络可以捕捉空战意图数据的时序特征。通过消融实验和对比实验结果表明,MLSTM-FCN模型在意图识别准确率、反应速度和抗干扰能力方面明显优于现有的空中目标意图识别模型,取得了sota的结果,为指挥员在进行空中作战决策时提供更有效的依据。 展开更多
关键词 意图识别 空中目标 深度学习 全卷积网络 长短记忆神经网络 压缩与激励模块
在线阅读 下载PDF
嵌入NLB模块的FCN在轴承信号降噪中的应用 被引量:2
12
作者 范啸宇 刘韬 +2 位作者 王振亚 陶佳 朱振军 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期55-65,共11页
深度学习在故障诊断取得了显著的进展,然而其多为端到端的智能诊断,在信号降噪方面的应用较少。本文提出了一种基于全卷积神经网络(fully convolutional network,FCN)的降噪方法。首先,模型整体采用了encoder-decoder架构,其中encoder... 深度学习在故障诊断取得了显著的进展,然而其多为端到端的智能诊断,在信号降噪方面的应用较少。本文提出了一种基于全卷积神经网络(fully convolutional network,FCN)的降噪方法。首先,模型整体采用了encoder-decoder架构,其中encoder部分由三层卷积层组成,decoder部分由四层反卷积层组成。其次,引入了残差连接对模型的学习目标进行了约束,使得模型在传播过程中更多地关注噪声信息。并且为了增强模型的特征提取能力,在encoder和decoder中引入了非局部块(non-local block,NLB)。然后,通过仿真信号对比实验选择网络的超参数,与目前主流的降噪方法进行对比,初步验证模型的降噪效果。最后,通过实际案例对所提方法的降噪效果进行对比验证,结果表明本文提出的方法在直观观察和降噪性能指标方面均取得了良好的应用效果,能够有效提高故障诊断的准确率。 展开更多
关键词 全卷积神经网络 残差连接 反卷积 降噪 故障诊断
在线阅读 下载PDF
基于深度全卷积神经弹性网络WCGAN-GP模型的语音增强研究 被引量:2
13
作者 许雯婷 龚晓峰 《计算机应用与软件》 北大核心 2024年第2期130-137,共8页
Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成... Wasserstein距离生成对抗网络(Wasserstein Generative Adversal Network,WGAN)模型^([1])在语音增强中运用广泛,但存在梯度易爆炸、性能不稳定等问题。引入梯度惩罚(Gradient Penalty,GP)和弹性网络条件约束,并将生成器和判别器优化成深度全卷积神经网络(Deep Fully Convolutional Neural Networks,DFCNN)结构,提出一种基于DFCNN的弹性网络条件梯度惩罚(Wasserstein Conditional Generative Adversal Network Gradient Penalty,WCGAN-GP)模型。改进后的模型可以达到真实Lipschitz限制条件,提高了可控性、稳定性和特征提取能力,能更快优化训练。实验将改进后的模型与WGAN对不同噪声条件下的语音进行增强,结果证实了改进后的模型在语音增强方面的优越性。 展开更多
关键词 Wasserstein距离 深度全卷积神经网络 梯度惩罚 弹性网络 条件约束
在线阅读 下载PDF
基于深度学习的兰姆波SCF-TFM超分辨率成像 被引量:1
14
作者 孙刘家 韩庆邦 +1 位作者 靳琪琳 葛考 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期101-110,共10页
腐蚀和裂纹是结构板常见的缺陷形式,兰姆波在非贯穿型损伤处发生模式转换是制约兰姆波成像质量的主要因素。此外,声波衍射遵循瑞利准则,超声成像存在分辨率极限。本文设计了一个全卷积神经网络对接收信号进行分割与重构,实现目标模态的... 腐蚀和裂纹是结构板常见的缺陷形式,兰姆波在非贯穿型损伤处发生模式转换是制约兰姆波成像质量的主要因素。此外,声波衍射遵循瑞利准则,超声成像存在分辨率极限。本文设计了一个全卷积神经网络对接收信号进行分割与重构,实现目标模态的自动拾取,抹除杂波和模式转换的干扰。提出符号相干因子全聚焦成像法(SCF-TFM),在全矩阵聚焦成像过程中施加符号相干因子,抑制非目标区域散射波对成像结果的干扰,同时考虑散射信号的幅值及相位信息,可以一定程度上突破瑞利准则的限制,实现超分辨率成像。实验结果表明:对于单个盲孔缺陷,该方法成像结果的横向分辨率比全聚焦提高62.41%,信噪比提升58.23%;而对于多个非对称盲孔缺陷,当缺陷间距大于瑞利准则分辨率极限时,该方法的信噪比提高了92.89%;缺陷间距小于瑞利准则分辨率极限时,该方法可以实现超分辨率成像。 展开更多
关键词 兰姆波 非对称盲孔缺陷 全卷积神经网络 SCF-TFM 超分辨率成像
在线阅读 下载PDF
基于深度学习的近岸海浪图像反演有效波高算法研究
15
作者 黄文华 胡伟 +4 位作者 崔学荣 曾强胜 商杰 王宁 李锐 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第6期35-44,共10页
海浪有效波高是近岸海洋观测的重要要素,近岸摄像头拍摄的图像可直观地反映波高大小,但目前基于图像的有效波高反演算法研究多处于室内实验阶段且方法缺乏普适性。本文基于深度学习技术,以山东青岛小麦岛近岸海浪为例,基于海浪图像和浮... 海浪有效波高是近岸海洋观测的重要要素,近岸摄像头拍摄的图像可直观地反映波高大小,但目前基于图像的有效波高反演算法研究多处于室内实验阶段且方法缺乏普适性。本文基于深度学习技术,以山东青岛小麦岛近岸海浪为例,基于海浪图像和浮标实测数据,开展近岸海浪图像反演有效波高方法研究,给出一种利用图像反演海浪有效波高的方法,该方法利用卷积网络提取海浪图像的特征,利用全连接网络提取风速等气象特征,将特征融合后作为全连接层的输入,最后输出反演的有效波高。通过对比多种模型的反演结果和浮标观测数据,发现多参数DenseNET121模型有效波高反演能力优于其他神经网络模型,其平均绝对误差为8.97 cm。本文研究为近岸海浪观测提供了一种新的技术思路。 展开更多
关键词 有效波高 卷积网络 全连接网络 深度学习 DenseNet模型
在线阅读 下载PDF
基于轻量级全连接张量映射网络的高光谱图像分类方法
16
作者 林知心 郑玉棒 +2 位作者 马天宇 王蕊 李恒超 《电子学报》 EI CAS CSCD 北大核心 2024年第10期3541-3551,共11页
近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全... 近年来,基于卷积神经网络的深度学习模型已经在高光谱图像分类领域取得优异表现.然而,模型性能的提升通常依赖于更深、更宽的网络结构,导致参数量和计算量增长,从而限制了模型在机载或星载载荷中的实际部署.为此,本文提出基于轻量级全连接张量映射网络的高光谱图像分类方法.根据全连接张量网络分解的映射思想以及高光谱图像“图谱合一”的结构特点,本文设计两种张量映射卷积单元,通过使用多个具有全连接结构的小尺寸卷积核代替原始卷积核,降低了卷积层的时间和空间复杂度.此外,基于新单元构建残差双分支张量模块.双分支结构共享同一组权重参数,并采用通道分割操作减少特征通道数,提升特征提取过程的实时性.本文所提模型通过使用新单元和新模块充分挖掘高光谱图像的局部空谱信息和全局光谱信息,有效提高了分类性能并减少硬件资源消耗.在三个常用高光谱图像数据集上的实验结果表明,所提模型相较于其他现有工作具有更高的分类性能以及更低的参数量和计算量. 展开更多
关键词 高光谱图像分类 模型压缩 全连接张量网络分解 卷积神经网络 张量神经网络 轻量卷积模块
在线阅读 下载PDF
基于箱线图与全卷积网络的动态场景烟雾检测 被引量:4
17
作者 王文标 郝友维 时启衡 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2213-2219,共7页
烟雾具有透光性强、纹理模糊等特征,且易与云、雾等目标混淆,导致基于视频的单阶段烟雾检测网络识别准确率低且受环境干扰明显,难以满足实际现场的使用需求。针对上述问题,提出一种基于箱线图背景建模(Box Plot Background, BPB)与全卷... 烟雾具有透光性强、纹理模糊等特征,且易与云、雾等目标混淆,导致基于视频的单阶段烟雾检测网络识别准确率低且受环境干扰明显,难以满足实际现场的使用需求。针对上述问题,提出一种基于箱线图背景建模(Box Plot Background, BPB)与全卷积分类网络(Full Convulsion DNCNN,FCDN)的二阶段烟雾检测算法:一阶段使用箱线图统计方法剔除背景队列中的移动干扰目标,利用背景队列中的最大值与最小值建立能适应动态场景的背景模型,以减少一阶段动态背景误报和背景模型被污染带来的烟雾区域遗漏;二阶段使用卷积层替换全连接层,解决输入图像尺寸和形状的限制问题,提升火灾初期细长形烟雾的检出效率。试验显示,该算法在动态场景下的漏检率与误检率均明显降低,并显著提升了烟雾检测速度。 展开更多
关键词 安全工程 烟雾检测 动态场景 箱线图 背景建模 全卷积网络
在线阅读 下载PDF
基于多尺度特征的地基云图分类检测算法 被引量:3
18
作者 孙继飞 贾克斌 《计算机科学》 CSCD 北大核心 2024年第S01期305-310,共6页
地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据。然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用。特别是当云图中出现多类云状时,现有技术难以... 地基云的自动识别方法和技术为气象分析中的云状识别和云量估计任务提供了重要的手段和依据。然而,对这两种任务的研究往往独立,互不相干,导致地基云图的分类与分割技术无法有效地结合使用。特别是当云图中出现多类云状时,现有技术难以按不同云类分别划分区域并进行云量计算。为了解决这一问题,提出用基于深度学习的语义分割方法实现对地基云图的按类分割。首先,构建了地基云图语义分割数据集GBCSS,该数据集包含3000幅云图,共计11个类别。在此基础上,提出了一种基于U型神经网络的改进方案UNet-PPM作为地基云图语义分割模型。为了增强网络对云的轮廓特征提取能力,引入了金字塔池化模块。该模块提取并聚合了不同尺度的图像特征,提升了网络获取全局信息的能力。最后,将设计的网络在GBCSS上进行了训练以及评估,其在测试集上达到了91.5%的像素准确率。与U-Net相比,UNet-PPM在像素准确率上有5.4%的提升,表明该网络对云的轮廓特征提取的能力更强,以及语义分割应用在地基云图中的可行性。 展开更多
关键词 地基云图 语义分割 云图数据集 全卷积网络 金字塔池化模块
在线阅读 下载PDF
改进FCOS算法的车辆检测方法研究
19
作者 杜昌皓 张智 《计算机应用与软件》 北大核心 2024年第6期257-262,281,共7页
针对目前车辆检测的误差率高、检测速度慢等问题,提出一种基于改进全卷积单阶段(Fully Convolutional One-Stage Object Detection,FCOS)的车辆检测算法。通过引入一种考虑多个几何特征的交并比损失函数,改善了训练过程中高长宽比车辆... 针对目前车辆检测的误差率高、检测速度慢等问题,提出一种基于改进全卷积单阶段(Fully Convolutional One-Stage Object Detection,FCOS)的车辆检测算法。通过引入一种考虑多个几何特征的交并比损失函数,改善了训练过程中高长宽比车辆、并行车辆难以准确回归的现象;使用多尺度卷积结合多维特征信息,增强了算法对不同尺度检测的鲁棒性;根据车辆检测场景改进了回归尺度,提高模型的推理准确度。实验结果表明,该方法在车辆检测任务中能够明显提升检测精度并保持检测速度不下降。 展开更多
关键词 计算机视觉 车辆检测 全卷积网络 多尺度卷积
在线阅读 下载PDF
完全预测下肢步行运动想象意图的可行性研究
20
作者 周斌 王宏 +1 位作者 李坦 兰钦 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期609-618,共10页
在下肢运动想象发生之前获取想象意图是为下肢神经康复系统提供精准控制策略的关键.为此,研究利用运动想象前的脑电图(electroencephalogram,EEG)信号完全预测下肢步行运动启停想象意图及其类型的可行性.对EEG信号进行预处理并提取运动... 在下肢运动想象发生之前获取想象意图是为下肢神经康复系统提供精准控制策略的关键.为此,研究利用运动想象前的脑电图(electroencephalogram,EEG)信号完全预测下肢步行运动启停想象意图及其类型的可行性.对EEG信号进行预处理并提取运动相关皮质电位(movement-related cortical potential,MRCP).基于MRCP挑选出具有明显可辨别性的15个通道.利用时间卷积网络模型从被选取的MRCP通道特征中解码出下肢步行运动想象意图和意图类型.结果表明,通过MRCP形态选取的EEG通道信号在启停意图和类别上均具有明显可分离差异,验证了只使用运动想象前EEG信号能够完全预测人类下肢运动启停意图和意图类型. 展开更多
关键词 脑电图 运动相关皮质电位 时间卷积网络 下肢步行运动想象意图 完全预测
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部