Structured-illumination reflectance imaging(SIRI)provides a new means for food quality detection.This original work investigated the capability of(SIRI)technique coupled with multivariate chemometrics to evaluate the ...Structured-illumination reflectance imaging(SIRI)provides a new means for food quality detection.This original work investigated the capability of(SIRI)technique coupled with multivariate chemometrics to evaluate the microbial contamination in pork inoculated with Pseudomonas fluorescens and Brochothrix thermosphacta during storage at different temperatures.The prediction performances based on different spectrum and the textural features of direct component and amplitude component images demodulated from the SIRI pattern,as well as their data fusion were comprehensively compared.Based on the full wavelength spectrum(420-700 nm)of amplitude component images,the orthogonal signal correction coupled with support vector machine regression provided the best predictions of the number of P.fluorescens and B.thermosphacta in pork,with the determination coefficients of prediction(R_(p)^(2))values of 0.870 and 0.906,respectively.Besides,the prediction models based on the amplitude component or direct component image textural features and the data fusion models using spectrum and textural features from direct component and amplitude component images cannot significantly improve their prediction accuracy.Consequently,SIRI can be further considered as a potential technique for the rapid evaluation of microbial contaminations in pork meat.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
The vibration is one of the important factors affecting imaging quality of conventional remote sensing imaging because the relative motion between the imaging system and the target can result in the degradation of ima...The vibration is one of the important factors affecting imaging quality of conventional remote sensing imaging because the relative motion between the imaging system and the target can result in the degradation of imaging quality. The influence of the vibration of the detector in the test path on reflective ghost imaging (RGI) is investigated theoretically and experimentally. We analyze the effects of the vibrating amplitude and velocity. The results demonstrate that the microvibrations of the bucket detector have almost no impact on the imaging resolution and signal-to-noise ratio (SNR) of RGI, i.e., the degradation of imaging quality caused by the vibration of the detector can be overcome to some extent. Our results can be helpful for remote sensing imaging.展开更多
This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. ...This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. The exit height can ensure that the incident rays, at arbitrary direction and arbitrary angle, after several transmission and reflection in the two right-angle reflectors, finally pass through the exit surface. Furthermore, it analyses the effects of different parameters on the exit height through computer simulation, and some important conclusions are obtained. The physical meaning of the sign of exit height is described, and the exact expression of the minimal thickness of the large optical path difference wind imaging interferometer is gained. This work is of great scientific significance to the static, real- time simultaneous detection of atmospheric wind field, and it will provide a theoretical and practical guidance for the miniaturization design and engineering realization of wind imaging interferometer.展开更多
Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, ...Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.展开更多
基金supported by Key Research&Development Program of Jiangsu Province in China(BE2020693)Major Project of Science and Technology of Anhui Province(201903a06020010)+1 种基金Joint Key Project of Science and Technology Innovation of Yangtze River Delta in Anhui Province(202004g01020009)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Structured-illumination reflectance imaging(SIRI)provides a new means for food quality detection.This original work investigated the capability of(SIRI)technique coupled with multivariate chemometrics to evaluate the microbial contamination in pork inoculated with Pseudomonas fluorescens and Brochothrix thermosphacta during storage at different temperatures.The prediction performances based on different spectrum and the textural features of direct component and amplitude component images demodulated from the SIRI pattern,as well as their data fusion were comprehensively compared.Based on the full wavelength spectrum(420-700 nm)of amplitude component images,the orthogonal signal correction coupled with support vector machine regression provided the best predictions of the number of P.fluorescens and B.thermosphacta in pork,with the determination coefficients of prediction(R_(p)^(2))values of 0.870 and 0.906,respectively.Besides,the prediction models based on the amplitude component or direct component image textural features and the data fusion models using spectrum and textural features from direct component and amplitude component images cannot significantly improve their prediction accuracy.Consequently,SIRI can be further considered as a potential technique for the rapid evaluation of microbial contaminations in pork meat.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.61372102 and 61571183)
文摘The vibration is one of the important factors affecting imaging quality of conventional remote sensing imaging because the relative motion between the imaging system and the target can result in the degradation of imaging quality. The influence of the vibration of the detector in the test path on reflective ghost imaging (RGI) is investigated theoretically and experimentally. We analyze the effects of the vibrating amplitude and velocity. The results demonstrate that the microvibrations of the bucket detector have almost no impact on the imaging resolution and signal-to-noise ratio (SNR) of RGI, i.e., the degradation of imaging quality caused by the vibration of the detector can be overcome to some extent. Our results can be helpful for remote sensing imaging.
基金supported by the Key Program of the National Natural Science Foundation of China (Grant No. 40537031)the National Natural Science Foundation of China (Grant No. 40875013)+2 种基金the National Defense Basic Scientific Research Program of China (Grant No. A1420080187)the National High Technology Research and Development Program of China (GrantNo. 2006AA12Z152)Xianyang Normal University Research Fund (Grant No. 06XSYK268)
文摘This paper gives the relation between spatial ray and its projection on paper plane based on the vector form of reflective law. Using the method of prism expansion, it obtains the exact expression of the exit height. The exit height can ensure that the incident rays, at arbitrary direction and arbitrary angle, after several transmission and reflection in the two right-angle reflectors, finally pass through the exit surface. Furthermore, it analyses the effects of different parameters on the exit height through computer simulation, and some important conclusions are obtained. The physical meaning of the sign of exit height is described, and the exact expression of the minimal thickness of the large optical path difference wind imaging interferometer is gained. This work is of great scientific significance to the static, real- time simultaneous detection of atmospheric wind field, and it will provide a theoretical and practical guidance for the miniaturization design and engineering realization of wind imaging interferometer.
基金supported by the National Natural Science Foundation of China (grant No. 42204126, 42174145, 42104132)Laoshan National Laboratory Science and Technology Innovation Project (grant No. LSKJ202203407)。
文摘Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique.