A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx...A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operat...Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.展开更多
Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rat...Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.展开更多
A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead refer...A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method.展开更多
The precision and accuracy of Nd isotope analysis using multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) is verified through repeated measurements of standard reference materials of JMC Nd2O3 and...The precision and accuracy of Nd isotope analysis using multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) is verified through repeated measurements of standard reference materials of JMC Nd2O3 and GBW04419. A mixed solution of Nd separated from hundreds of geological samples is measured for 143Nd/144Nd ratio, which produces excellent long-term repeatability. This solution, named as CAGS-Nd-1, can be used as an in-house reference material for monitoring instrument stability during Nd isotope measurements.展开更多
Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster ...Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.展开更多
Consensus is an emerging technique using neighbor-to-neighbor interaction to generate steering commands for cooperative control of multiple vehicles. A three-dimensional formation keeping strategy for multiple unmanne...Consensus is an emerging technique using neighbor-to-neighbor interaction to generate steering commands for cooperative control of multiple vehicles. A three-dimensional formation keeping strategy for multiple unmanned aerial vehicles(multi-UAV) is proposed based on consensus, aiming at maintaining a specified geometric configuration. A formation control algorithm with guidance and corresponding flight controllers is given, managing position and attitude, respectively. In order to follow a three-dimensional predefined flight path, by introducing the tracking orders as reference states into the consensus, the formation control algorithm is designed, following the predefined flight path and maintaining geometric configuration simultaneously. The flight controllers are constructed by nonlinear dynamic inverse, including attitude design and velocity design. With the whole system composed of a nonlinear six-degree-of-freedom UAV model, the formation control algorithm and the flight controllers, the formation keeping strategy is closed loop and with full states. In simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the proposed strategy.展开更多
基金supported by the National Natural Science Foundation of China(11201005,11071015)the Natural Science Foundation of Anhui Province(1308085QA13)the Key Project from the National Bureau ofStatistics(2013LZ17)
文摘A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金Projects(51076027,51036002) supported by the National Natural Science Foundation of ChinaProject(20090092110051) supported by the Doctoral Fund of Ministry of Education of China
文摘Solid oxide fuel cells (SOFCs) are considered to be one of the most important clean,distributed resources. However,SOFCs present a challenging control problem owing to their slow dynamics,nonlinearity and tight operating constraints. A novel data-driven nonlinear control strategy was proposed to solve the SOFC control problem by combining a virtual reference feedback tuning (VRFT) method and support vector machine. In order to fulfill the requirement for fuel utilization and control constraints,a dynamic constraints unit and an anti-windup scheme were adopted. In addition,a feedforward loop was designed to deal with the current disturbance. Detailed simulations demonstrate that the fast response of fuel flow for the current demand disturbance and zero steady error of the output voltage are both achieved. Meanwhile,fuel utilization is kept almost within the safe region.
基金Project(40927001)supported by the National Natural Science Foundation of ChinaProject(2011R09021-06)supported by the Program of Key Scientific and Technological Innovation Team of Zhejiang Province,ChinaProject supported by the Fundamental Research Funds for the Central Universities of China
文摘Quality degradation occurs during transmission of video streaming over the error-prone network. By jointly using redundant slice, reference frame selection, and intra/inters mode decision, a content and end-to-end rate-distortion based error resilience method is proposed. Firstly, the intra/inter mode decision is implemented using macro-block(MB) refresh, and then redundant picture and reference frame selection are utilized together to realize the redundant coding. The estimated error propagation distortion and bit consumption of refresh MB are used for the mode and reference frame decision of refresh MB. Secondly, by analyzing the statistical property in the successive frames, the error propagation distortion and bit consumption are formulated as a function of temporal distance. Encoding parameters of the current frame is determined by the estimated error propagation distortion and bit consumption. Thirdly, by comparing the rate-distortion cost of different combinations, proper selection of error resilience method is performed before the encoding process of the current frame. Finally, the MB mode and bit distribution of the primary picture are analyzed for the derivation of the texture information. The motion information is subsequently incorporated for the calculation of video content complexity to implement the content based redundant coding. Experimental results demonstrate that the proposed algorithm achieves significant performance gains over the LA-RDO and HRP method when video is transmitted over error-prone channel.
文摘A high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICPMS) was combined, and the chromatography conditions were optimized. The stability and homogeneity of a trimethyllead reference material were determined using this method.
文摘The precision and accuracy of Nd isotope analysis using multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) is verified through repeated measurements of standard reference materials of JMC Nd2O3 and GBW04419. A mixed solution of Nd separated from hundreds of geological samples is measured for 143Nd/144Nd ratio, which produces excellent long-term repeatability. This solution, named as CAGS-Nd-1, can be used as an in-house reference material for monitoring instrument stability during Nd isotope measurements.
基金supported by the National Natural Science Foundation of China(61401389)the Joint Fund of the Ministry of Education of China(6141A02033310)
文摘Micro-satellite cluster enables a whole new class of missions for communications, remote sensing, and scientific research for both civilian and military purposes. Synchronizing the time of the satellites in a cluster is important for both cluster sensing capabilities and its autonomous operating. However, the existing time synchronization methods are not suitable for microsatellite cluster, because it requires too many human interventions and occupies too much ground control resource. Although, data post-process may realize the equivalent time synchronization, it requires processing time and powerful computing ability on the ground, which cannot be implemented by cluster itself. In order to autonomously establish and maintain the time benchmark in a cluster, we propose a compact time difference compensation system(TDCS), which is a kind of time control loop that dynamically adjusts the satellite reference frequency according to the time difference. Consequently, the time synchronization in the cluster can be autonomously achieved on-orbit by synchronizing the clock of other satellites to a chosen one's. The experimental result shows that the standard deviation of time synchronization is about 102 ps when the carrier to noise ratio(CNR) is 95 d BHz, and the standard deviation of corresponding frequency difference is approximately0.36 Hz.
基金Project(61473229)supported by the National Natural Science Foundation of ChinaProjects(310832163403,310832161012)supported by the Special Fund for Basic Scientific Research of Central Colleges,Chang'an University,ChinaProject(CXY1512-3)supported by the Xi'an Science and Technology Plan,China
文摘Consensus is an emerging technique using neighbor-to-neighbor interaction to generate steering commands for cooperative control of multiple vehicles. A three-dimensional formation keeping strategy for multiple unmanned aerial vehicles(multi-UAV) is proposed based on consensus, aiming at maintaining a specified geometric configuration. A formation control algorithm with guidance and corresponding flight controllers is given, managing position and attitude, respectively. In order to follow a three-dimensional predefined flight path, by introducing the tracking orders as reference states into the consensus, the formation control algorithm is designed, following the predefined flight path and maintaining geometric configuration simultaneously. The flight controllers are constructed by nonlinear dynamic inverse, including attitude design and velocity design. With the whole system composed of a nonlinear six-degree-of-freedom UAV model, the formation control algorithm and the flight controllers, the formation keeping strategy is closed loop and with full states. In simulation, three-dimensional formation flight demonstrates the feasibility and effectiveness of the proposed strategy.