针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD)....针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD).其思想是定义了特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集,并重点研究了传统划分算法的自适应优化与改进.首先,利用特征标准差定义特征区分度,选择出区分度强的特征.其次,利用皮尔逊相关系数度量特征簇中每个特征的冗余度,选择出冗余度低的特征.最后,将特征区分度与特征冗余度之积作为特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集.实验将所提算法与其他聚类算法在14个UCI数据集上进行对比,结果验证了CH_KD算法的有效性与优势.展开更多
文摘针对传统的K-medoids聚类算法在聚类时需要随机选择初始类中心且指定聚类数目K,及聚类结果不稳定的问题,提出了一种优化初始类中心的自适应K-medoids算法(adaptive K-medoids algorithm for optimizing initial class centers,CH_KD).其思想是定义了特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集,并重点研究了传统划分算法的自适应优化与改进.首先,利用特征标准差定义特征区分度,选择出区分度强的特征.其次,利用皮尔逊相关系数度量特征簇中每个特征的冗余度,选择出冗余度低的特征.最后,将特征区分度与特征冗余度之积作为特征重要度,以此筛选出每一簇中最优的代表特征,组成特征子集.实验将所提算法与其他聚类算法在14个UCI数据集上进行对比,结果验证了CH_KD算法的有效性与优势.