期刊文献+
共找到35,229篇文章
< 1 2 250 >
每页显示 20 50 100
Advances in Sn-based electrocatalysts for selective reduction of CO_(2) to formate
1
作者 ZHANG Ying-ping LI Wei-jie +1 位作者 HAN Chao LIU Yong 《Journal of Central South University》 2025年第5期1581-1601,共21页
The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) ... The selective reduction of carbon dioxide(CO_(2))into high-value-added chemicals is one of the most effective means to solve the current energy and environmental problems,which could realize the utilization of CO_(2) and promote the balance of the carbon cycle.Formate is one of the most economical and practical products of all the electrochemical CO_(2) reduction products.Among the many metal-based electrocatalysts that can convert CO_(2) into formate,Sn-based catalysts have received a lot of attention because of their low-cost,non-toxic characteristics and high selectivity for formate.In this article,the most recent development of Sn-based electrocatalysts is comprehensively summarized by giving examples,which are mainly divided into monometallic Sn,alloyed Sn,Sn-based compounds and Sn composite catalysts.Finally,the current performance enhancement strategies and future directions of the field are summarized. 展开更多
关键词 CO_(2)electrochemical reduction Sn-based electrocatalysts FORMATE progress and perspective selective reduction
在线阅读 下载PDF
Ordering Degree Regulation of Pt_(2)NiCo Intermetallics for Efficient Oxygen Reduction Reaction
2
作者 Chen-Hao Zhang Han-Yu Hu +3 位作者 Jun-Hao Yang Qian Zhang Chang Yang De-Li Wang 《电化学(中英文)》 北大核心 2025年第4期12-23,共12页
Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometri... Alloying transition metals with Pt is an effective strategy for optimizing Pt-based catalysts toward the oxygen reduction reaction(ORR).Atomic ordered intermetallic compounds(IMC)provide unique electronic and geometrical effects as well as stronger intermetallic interactions due to the ordered arrangement of metal atoms,thus exhibiting superior electrocata-lytic activity and durability.However,quantitatively analyzing the ordering degree of IMC and exploring the correlation between the ordering degree and ORR activity remains extremely challenging.Herein,a series of ternary Pt_(2)NiCo interme-tallic catalysts(o-Pt_(2)NiCo)with different ordering degree were synthesized by annealing temperature modulation.Among them,the o-Pt_(2)NiCo which annealed at 800℃for two hours exhibits the highest ordering degree and the optimal ORR ac-tivity,which the mass activity of o-Pt_(2)NiCo is 1.8 times and 2.8 times higher than that of disordered Pt_(2)NiCo alloy and Pt/C.Furthermore,the o-Pt_(2)NiCo still maintains 70.8%mass activity after 30,000 potential cycles.Additionally,the ORR activity test results for Pt_(2)NiCo IMC with different ordering degree also provide a positive correlation between the ordering degree and ORR activity.This work provides a prospective design direction for ternary Pt-based electrocatalysts. 展开更多
关键词 Fuel cell Oxygen reduction reaction ELECTROCATALYSIS Intermetallic compound Ordering degree
在线阅读 下载PDF
Recent advances of Ru-assisted semiconductor in photocatalytic N_(2) reduction to produce ammonia
3
作者 ZHAO Zehui REN Guangmin MENG Xiangchao 《燃料化学学报(中英文)》 北大核心 2025年第3期301-322,共22页
In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low... In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed. 展开更多
关键词 PHOTOCATALYSIS N_(2)reduction ammonia synthesis RU
在线阅读 下载PDF
A CNT Intercalated Co Porphyrin-Based Metal Organic Framework Catalyst for Oxygen Reduction Reaction
4
作者 Pei-Pei He Jin-Hua Shi +6 位作者 Xiao-Yu Li Ming-Jie Liu Zhou Fang Jing He Zhong-Jian Li Xin-Sheng Peng Qing-Gang He 《电化学(中英文)》 北大核心 2025年第1期31-40,共10页
The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNT... The poor electronic conductivity of metal-organic framework(MOF)materials hinders their direct application in the field of electrocatalysis in fuel cells.Herein,we proposed a strategy of embedding carbon nanotubes(CNTs)during the growth process of MOF crystals,synthesizing a metalloporphyrin-based MOF catalyst TCPPCo-MOF-CNT with a unique CNT-intercalated MOF structure.Physical characterization revealed that the CNTs enhance the overall conductivity while retaining the original characteristics of the MOF and metalloporphyrin.Simultaneously,the insertion of CNTs generated adequate mesopores and created a hierarchical porous structure that enhances mass transfer efficiency.X-ray photoelectron spectroscopic analysis confirmed that the C atom in CNT changed the electron cloud density on the catalytic active center Co,optimizing the electronic structure.Consequently,the E_(1/2) of the TCPPCo-MOF-CNT catalyst under neutral conditions reached 0.77 V(vs.RHE),outperforming the catalyst without CNTs.When the TCPPCo-MOF-CNT was employed as the cathode catalyst in assembling microbial fuel cells(MFCs)with Nafion-117 as the proton exchange membrane,the maxi-mum power density of MFCs reached approximately 500 mW·m^(-2). 展开更多
关键词 Metal organic framework CNT intercalated ELECTROCATALYSIS Oxygen reduction reaction Microbial fuel cell
在线阅读 下载PDF
Significantly Enhanced Oxygen Reduction Reaction Activity in Co-N-C Catalysts through Synergistic Boron Doping
5
作者 Chang Lan Jing-Sen Bai +8 位作者 Xin Guan Shuo Wang Nan-Shu Zhang Yu-Qing Cheng Jin-Jing Tao Yu-Yi Chu Mei-Ling Xiao Chang-Peng Liu Wei Xing 《电化学(中英文)》 北大核心 2025年第9期56-68,共13页
The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this wor... The weak adsorption energy of oxygen-containing intermediates on Co center leads to a considerable performance dis-parity between Co-N-C and costly Pt benchmark in catalyzing oxygen reduction reaction(ORR).In this work,we strategi-cally engineer the active site structure of Co-N-C via B substitution,which is accomplished by the pyrolysis of ammonium borate.During this process,the in-situ generated NH_(3)gas plays a critical role in creating surface defects and boron atoms substituting nitrogen atoms in the carbon structure.The well-designed CoB_(1)N_(3)active site endows Co with higher charge density and stronger adsorption energy toward oxygen species,potentially accelerating ORR kinetics.As expected,the resulting Co-B/N-C catalyst exhibited superior ORR performance over Co-N-C counterpart,with 40 mV,and fivefold en-hancement in half-wave potential and turnover frequency(TOF).More importantly,the excellent ORR performance could be translated into membrane electrode assembly(MEA)in a fuel cell test,delivering an impressive peak power density of 824 mW·cm^(-2),which is currently the best among Co-based catalysts under the same conditions.This work not only demon-strates an effective method for designing advanced catalysts,but also affords a highly promising non-precious metal ORR electrocatalyst for fuel cell applications. 展开更多
关键词 Oxygen reduction reaction Proton exchange membrane fuel cell Single-atom catalyst Co-N-C Boron doping
在线阅读 下载PDF
Small⁃size Au nanoparticles anchored on pyrenyl⁃graphdiyne for N_(2)electroreduction
6
作者 LIU Chang ZHANG Chao LU Tongbu 《无机化学学报》 北大核心 2025年第1期174-182,共9页
A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with ... A gold catalyst of Au/pyrenyl‑graphdiyne(Pyr‑GDY)was prepared by anchoring small size of gold nanoparticles(Au NPs)on the surface of Pyr‑GDY for electrocatalytic nitrogen reduction reaction(eNRR),in which Au NPs with a size of approximately 3.69 nm was evenly distributed on spongy‑like porous Pyr‑GDY.The catalyst exhibited a good electrocatalytic activity for N_(2)reduction in a nitrogen‑saturated electrolyte,with an ammonia yield of 32.1μg·h^(-1)·mg_(cat)^(-1)at-0.3 V(vs RHE),3.5 times higher than that of Au/C(Au NPs anchored on carbon black).In addition,Au/Pyr‑GDY showed a Faraday efficiency(FE)of 26.9%for eNRR,and a good catalysis durability for over 22 h. 展开更多
关键词 graphdiyne small‑size Au nanoparticle electrocatalytic nitrogen reduction
在线阅读 下载PDF
Corrigendum to“Mechanistic Insights into Water-Mediated CO_(2)Electrochemical Reduction Reactions on Cu@C_(2)N Catalysts:A Theoretical Study”[Acta Physico-Chimica Sinica(2024)40,2303040]
7
《物理化学学报》 北大核心 2025年第5期144-144,共1页
Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian Univers... Hanyu Xu 1,Xuedan Song 1,*,Qing Zhang 1,Chang Yu 1,Jieshan Qiu 1,2,*1 Liaoning Key Lab for Energy Materials and Chemical Engineering,State Key Laboratory of Fine Chemicals,School of Chemical Engineering,Dalian University of Technology,Dalian 116024,Liaoning Province,China. 展开更多
关键词 chemical engineeringdalian theoretical study water mediated Cu C N catalysts fine chemicalsschool CO electrochemical reduction chemical engineeringstate
在线阅读 下载PDF
Local Electric Fields Coupled with Cl^(−)Fixation Strategy for Improving Seawater Oxygen Reduction Reaction Performance
8
作者 Yu-Rong Liu Miao Zhang +8 位作者 Yan-Hui Yu Ya-Lin Liu Jing Li Xiao-Dong Shi Zhen-Ye Kang Dao-Xiong Wu Peng Rao Ying Liang Xin-Long Tian 《电化学(中英文)》 北大核心 2025年第9期46-55,共10页
Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field c... Development of robust electrocatalyst for oxygen reduction reaction(ORR)in a seawater electrolyte is the key to realize seawater electrolyte-based zinc-air batteries(SZABs).Herein,constructing a local electric field coupled with chloride ions(Cl-)fixation strategy in dual single-atom catalysts(DSACs)was proposed,and the resultant catalyst delivered considerable ORR performance in a seawater electrolyte,with a high half-wave potential(E_(1/2))of 0.868 V and a good maximum power density(Pmax)of 182 mW·cm^(−2)in the assembled SZABs,much higher than those of the Pt/C catalyst(E_(1/2):0.846 V;Pmax:150 mW·cm^(−2)).The in-situ characterization and theoretical calculations revealed that the Fe sites have a higher Cl^(−)adsorption affinity than the Co sites,and preferentially adsorbs Cl^(−)in a seawater electrolyte during the ORR process,and thus constructs a low-concentration Cl^(−)local microenvironment through the common-ion exclusion effect,which prevents Cl^(−)adsorption and corrosion in the Co active centers,achieving impressive catalytic stability.In addition,the directional charge movement between Fe and Co atomic pairs establishes a local electric field,optimizing the adsorption energy of Co sites for oxygen-containing intermediates,and further improving the ORR activity. 展开更多
关键词 Seawater zinc-air battery Oxygen reduction reaction Local electric field Chloride ion fixation strategy Sin-gle-atom catalyst
在线阅读 下载PDF
Electrocatalytic Nitric Oxide Reduction to Yield Ammonia over Fe_(3)C Nanocrystals
9
作者 Sen Lin Lang Zhang +4 位作者 Tong Hou Jun-Yang Ding Zi-Mo Peng Yi-Fan Liu Xi-Jun Liu 《电化学(中英文)》 北大核心 2025年第4期1-11,共11页
Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atm... Nitric oxide(NO),which generally originates from vehicle exhaust and industrial flue gases,is one of the most serious air pollutants.In this case,the electrochemical NO reduction reaction(NORR)not only removes the atmospheric pollutant NO but also produces valuable ammonia(NH_(3)).Hence,through the synthesis and modification of Fe_(3)C nanocrystal cata-lysts,the as-obtained optimal sample of Fe_(3)C/C-900 was adopted as the NORR catalyst at ambient conditions.As a result,the Fe_(3)C/C-900 catalyst showed an NH_(3)Faraday efficiency of 76.5%and an NH_(3)yield rate of 177.5μmol·h^(-1)·cm^(-2)at the working potentials of-0.8 and-1.2 V versus reversible hydrogen electrode(vs.RHE),respectively.And it delivered a stable NORR activity during the electrolysis.Moreover,we attribute the high NORR properties of Fe_(3)C/C-900 to two aspects:one is the enhanced intrinsic activity of Fe_(3)C nanocrystals,including the lowering of the energy barrier of rate-limiting step(*NOH→*N)and the inhibition of hydrogen evolution;on the other hand,the favorable dispersion of active components,the effective adsorption of gaseous NO,and the release of liquid NH_(3)products facilitated by the porous carbon substrate. 展开更多
关键词 Nitric oxide reduction NH3 synthesis Fe_(3)C nanocrystal ELECTROLYSIS Theoretical calculation
在线阅读 下载PDF
Z-scheme Co_(3)O_(4)/BiOBr heterojunction for efficient photoreduction CO_(2)reduction
10
作者 ZHANG Xiaofan DUAN Yu +3 位作者 SHI Meijie LU Nan LI Renhong YAN Xiaoqing 《无机化学学报》 北大核心 2025年第9期1878-1888,共11页
A Co_(3)O_(4)/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selec-tive photocatalytic CO_(2)reduction.The optimized Co_(3)O_(4)/BiOBr-0.8 catalyst exhibited CO and CH_(4)evo... A Co_(3)O_(4)/BiOBr heterojunction was synthesized via a facile one-step solvothermal method for highly selec-tive photocatalytic CO_(2)reduction.The optimized Co_(3)O_(4)/BiOBr-0.8 catalyst exhibited CO and CH_(4)evolution rates of 112.2 and 5.5µmol·g^(-1)·h^(-1),respectively,representing 6.3-fold and 3.9-fold enhancements over pristine BiOBr.The heterojunction demonstrated broadened light absorption,enhanced photoelectrochemical activity,reduced charge-transfer resistance,and improved separation efficiency of photogenerated carriers(e^(-)/h^(+)).These synergistic effects were attributed to the formation of a Z-scheme heterostructure,which facilitated solar energy utilization and electron reduction capacity while suppressing carrier recombination. 展开更多
关键词 PHOTOCATALYSIS CO_(2)reduction heterojunction catalyst BiOBr Co_(3)O_(4)
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
11
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
De novo-design of highly exposed Co−N−C single-atom catalyst for oxygen reduction reaction
12
作者 ZHOU Dan ZHU Hongyue +1 位作者 ZHAO Yang LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第1期128-137,共10页
The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these c... The nitrogen-coordinated metal single-atom catalysts(M−N−C SACs)with an ultra-high metal loading synthetized by direct high-temperature pyrolysis have been widely reported.However,most of metal single atoms in these catalysts were buried in the carbon matrix,resulting in a low metal utilization and inaccessibility for adsorption of reactants during the catalytic process.Herein,we reported a facile synthesis based on the hard-soft acid-base(HSAB)theory to fabricate Co single-atom catalysts with highly exposed metal atoms ligated to the external pyridinic-N sites of a nitrogen-doped carbon support.Benefiting from the highly accessible Co active sites,the prepared Co−N−C SAC exhibited a superior oxygen reduction reactivity comparable to that of the commercial Pt/C catalyst,showing a high turnover frequency(TOF)of 0.93 e^(−)·s^(-1)·site^(-1)at 0.85 V vs.RHE,far exceeding those of some representative SACs with a ultra-high metal content.This work provides a rational strategy to design and prepare M−N−C single-atom catalysts featured with high site-accessibility and site-density. 展开更多
关键词 hard-soft acid-base Co−N−C single-atom catalyst highly accessible active sites oxygen reduction reaction
在线阅读 下载PDF
Biomass-derived N-doped porous carbon supported single Fe atoms as low-cost and high-performance electrocatalysts for oxygen reduction reaction
13
作者 WANG Li-ping XIAO Jin +1 位作者 MAO Qiu-yun ZHONG Qi-fan 《Journal of Central South University》 2025年第4期1368-1383,共16页
Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and exp... Single-atom catalysts(SACs)are promising for oxygen reduction reaction(ORR)on account of their excellent catalytic activity and maximum utilization of atoms.However,due to the complicated preparation processes and expensive reagents used,the cost of SACs is usually too high to put into practical application.The development of cost-effective and sustainable SACs remains a great challenge.Herein,a low-cost method employing biomass is designed to prepare efficient single-atom Fe-N-C catalysts(SA-Fe-N-C).Benefiting from the confinement effect of porous carbon support and the coordination effect of glucose,SA-Fe-N-C is derived from cheap flour by the two-step pyrolysis.Atomically dispersed Fe atoms exist in the form of Fe-N_(x),which acts as active sites for ORR.The catalyst shows outstanding activity with a half-wave potential(E_(1/2))of 0.86 V,which is better than that of Pt/C(0.84 V).Additionally,the catalyst also exhibits superior stability.The ORR catalyzed by SA-Fe-N-C proceeds via an efficient 4e transfer pathway.The high performance of SA-Fe-N-C also benefits from its porous structure,extremely high specific surface area(1450.1 m^(2)/g),and abundant micropores,which are conducive to increasing the density of active sites and fully exposing them.This work provides a cost-effective strategy to synthesize SACs from cheap biomass,achieving a balance between performance and cost. 展开更多
关键词 oxygen reduction reaction single-atom catalyst porous carbon MICROPORE biomass
在线阅读 下载PDF
A strength reduction method based on double reduction parameters and its application 被引量:45
14
作者 袁维 白冰 +1 位作者 李小春 汪海滨 《Journal of Central South University》 SCIE EI CAS 2013年第9期2555-2562,共8页
In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of... In the traditional strength reduction method,the cohesion and the friction angle adopt the same reduction parameter,resulting in equivalent proportional reduction.This method does not consider the different effects of the cohesion and friction angle on the stability of the same slope and is defective to some extent.Regarding this defect,a strength reduction method based on double reduction parameters,which adopts different reduction parameters,is proposed.The core of the double-parameter reduction method is the matching reduction principle of the slope with different angles.This principle is represented by the ratio of the reduction parameter of the cohesion to that of the friction angle,described as η.With the increase in the slopeangle,ηincreases; in particular,when the slope angle is 45°,tηis 1.0.Through the matching reduction principle,different safety margin factors can be calculated for the cohesion and friction angle.In combination with these two safety margin factors,a formula for calculating the overall safety factor of the slope is proposed,reflecting the different contributions of the cohesion and friction angle to the slope stability.Finally,it is shown that the strength reduction method based on double reduction parameters acquires a larger safety factor than the classic limit equilibrium method,but the calculation results are very close to those obtained by the limit equilibrium method. 展开更多
关键词 double reduction parameter strength reduction method matching reduction principle slope stability
在线阅读 下载PDF
Assessment on strength reduction schemes for geotechnical stability analysis involving the Drucker-Prager criterion 被引量:5
15
作者 WANG Dong-yong CHEN Xi +1 位作者 QI Ji-lin PENG Li-yun 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3238-3245,共8页
For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finit... For geotechnical stability analysis involving the Drucker-Prager(DP)criterion,both the c-ϕreduction scheme and the M-K reduction scheme can be utilized.With the aid of the second-order cone programming optimized finite element method(FEM-SOCP),a comparison of the two strength reduction schemes for the stability analysis of a homogeneous slope and a multilayered slope is carried out.Numerical investigations disclose that the FoS results calculated by the c-ϕreduction scheme agree well with those calculated by the classical Morgenstern-Price solutions.However,the FoS results attained by the M-K reduction scheme may lead to conservative estimation of the geotechnical safety,particularly for the cases with large internal friction angles.In view of the possible big difference in stability analysis results caused by the M-K reduction scheme,the c-ϕreduction scheme is recommended for the geotechnical stability analyses involving the DP criterion. 展开更多
关键词 geotechnical stability Drucker-Prager criterion strength reduction second-order cone programming c-ϕreduction M-K reduction
在线阅读 下载PDF
基于Reduct的“规则+例外”学习 被引量:10
16
作者 王珏 姚一豫 王飞跃 《计算机学报》 EI CSCD 北大核心 2005年第11期1778-1789,共12页
一般地说,机器学习关注的是“规则”,并将规则不能覆盖的“例外”考虑为噪声.然而,大量的应用不仅需要刻画满足大多数观察的规则,同时需要显现可解释地表示例外.在情报分析与安全预警这类应用中,例外可能是更为重要的知识.对此作者描述... 一般地说,机器学习关注的是“规则”,并将规则不能覆盖的“例外”考虑为噪声.然而,大量的应用不仅需要刻画满足大多数观察的规则,同时需要显现可解释地表示例外.在情报分析与安全预警这类应用中,例外可能是更为重要的知识.对此作者描述了一类限制在结构化符号数据集合上的基于Reduct的“规则+例外”学习的理论框架,并给出了解决这个框架各个组成部分中所存在的问题的一个方案. 展开更多
关键词 机器学习 例外分析 reduct
在线阅读 下载PDF
A new double reduction method for slope stability analysis 被引量:16
17
作者 白冰 袁维 李小春 《Journal of Central South University》 SCIE EI CAS 2014年第3期1158-1164,共7页
The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a ... The core of strength reduction method(SRM) involves finding a critical strength curve that happens to make the slope globally fail and a definition of factor of safety(FOS). A new double reduction method, including a detailed calculation procedure and a definition of FOS for slope stability was developed based on the understanding of SRM. When constructing the new definition of FOS, efforts were made to make sure that it has concise physical meanings and fully reflects the shear strength of the slope. Two examples, slopes A and B with the slope angles of 63° and 34° respectively, were given to verify the method presented. It is found that, for these two slopes, the FOSs from original strength reduction method are respectively 1.5% and 38% higher than those from double reduction method. It is also found that the double reduction method predicts a deeper potential slide line and a larger slide mass. These results show that on one hand, the double reduction method is comparative to the traditional methods and is reasonable, and on the other hand, the original strength reduction method may overestimate the safety of a slope. The method presented is advised to be considered as an additional option in the practical slope stability evaluations although more useful experience is required. 展开更多
关键词 slope stability strength reduction method double strength reduction method factor of safety limit equilibrium method
在线阅读 下载PDF
Influence of hydrogen-enriched atmosphere under coke oven gas injection on reduction swelling behaviors of oxidized pellet 被引量:7
18
作者 龙红明 王宏涛 +2 位作者 狄瞻霞 春铁军 柳政根 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期1890-1898,共9页
It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concen... It is of great importance to elucidate reduction swelling behaviors and reaction mechanism of oxidized pellet in hydrogen-enriched atmosphere under coke oven gas injection. In this work, the effects of hydrogen concentration in N_2-CO-H_2 atmosphere with unchanged CO content on reduction swelling behaviors of oxidized pellet at 1173 K were studied, to clarify the mechanism of hydrogen-enriched reduction and exclude the influences of CO. Then, the reduction swelling behaviors of oxidized pellet at 1173 K in actual atmosphere under coke oven gas(COG) injection, got from the simulation results of multi-fluid blast furnace model, were investigated. The results show that with the concentration of hydrogen increasing in N_2-CO-H_2 gas from 2% to 18%, the reduction swelling index of pellet decreases from 10.12% to 5.57% while the reduction ratio of pellet increases obviously from 39.85% to 69.58%. In addition, with COG injection rate increasing from 0 to 152.34 m^3/t, the reduction swelling index of pellet decreases slightly from 10.71% to 9.54% while the reduction ratio of pellet is increased from 31.57% to 36.39%. The microstructures of pellet are transformed from the platy structure to the flocculent structure. 展开更多
关键词 reduction swelling behaviors oxidized pellet coke oven gas(COG) injection blast furnace hydrogen-enriched reduction
在线阅读 下载PDF
Action rules of H_2 and CO in gas-based direct reduction of iron ore pellets 被引量:7
19
作者 易凌云 黄柱成 +1 位作者 彭虎 姜涛 《Journal of Central South University》 SCIE EI CAS 2012年第8期2291-2296,共6页
Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and ... Alastraet: The gas-based direct reduction of iron ore pellets was carried out by simulating the typical gas composition in coal gasification process, Midrex and HyMII processes. The influences of gas composition and temperature on reduction were studied. Results show that the increasing of HE proportion is helpful to improve the reduction rate. However, when ~o(H2):~o(CO)〉1.6:1, changes of HE content have little influence on it. Appropriate reduction temperature is about 950 ℃, and higher temperature (1 000 ℃) may unfavorably slow the reduction rate. From the kinetics analysis at 950 ℃, the most part of reduction course is likely controlled by interfacial chemical reaction mechanism and in the final stage controlled by a combined effect of gaseous diffusion and interfacial chemical reaction mechanisms. From the utilizations study of different reducing gases at 950 ℃, the key step in reduction course is the 3rd stage (FeO→Fe), and the utilization of reducing gas increases with the rise of HE proportion. 展开更多
关键词 iron ore pellets coal gas gas-based direct reduction reduction kinetics gas utilization
在线阅读 下载PDF
Fast assignment reduction in inconsistent incomplete decision systems 被引量:3
20
作者 Min Li Shaobo Deng +1 位作者 Shengzhong Feng Jianping Fan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第1期83-94,共12页
This paper focuses on fast algorithm for computing the assignment reduct in inconsistent incomplete decision systems. It is quite inconvenient to judge the assignment reduct directly ac-cording to its definition. We p... This paper focuses on fast algorithm for computing the assignment reduct in inconsistent incomplete decision systems. It is quite inconvenient to judge the assignment reduct directly ac-cording to its definition. We propose the judgment theorem for the assignment reduct in the inconsistent incomplete decision system, which greatly simplifies judging this type reduct. On such basis, we derive a novel attribute significance measure and construct the fast assignment reduction algorithm (F-ARA), intended for com-puting the assignment reduct in inconsistent incomplete decision systems. Final y, we make a comparison between F-ARA and the discernibility matrix-based method by experiments on 13 Univer-sity of California at Irvine (UCI) datasets, and the experimental results prove that F-ARA is efficient and feasible. 展开更多
关键词 assignment reduction upper approximation reduction inconsistent incomplete decision system rough set.
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部