针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization ...针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。展开更多
文摘针对红嘴蓝鹊优化算法(Red-billed Blue Magpie Optimization Algorithm,RBMO)存在多样性迅速退化、寻优精度差、易陷入局部最优的问题,提出了一种基于混合策略的自适应红嘴蓝鹊优化算法(Adaptive Red-Billed Blue Magpie Optimization Algorithm Based on Mixed Strategy,JRBMO)。首先,引入Hammersley序列初始化种群,使初始解分布更均匀,为寻优提供基础;其次,在勘探阶段,提出自适应螺旋围捕策略,通过动态控制个体的勘探范围与方向,提高RBMO的搜索能力。在开发阶段,引入莱维飞行策略,对当前最优解进行局部扰动,增强算法局部开发能力;最后,提出自适应维度变异策略,根据种群适应度分布的变化,对个体进行维度变异,避免算法陷入局部最优。在CEC2017与CEC2019测试集上对算法性能进行评估,结果显示JRBMO均值胜率分别达到88.9%和70%,验证了JRBMO的有效性。此外,将JRBMO应用于拉(压)弹簧设计问题和三维无线传感器网络(WSN)节点覆盖问题上,JRBMO均取得了最优的结果,其中WSN节点均值覆盖率高出原算法6.3%,体现了JRBMO在实际应用中的普适性。