期刊文献+
共找到132篇文章
< 1 2 7 >
每页显示 20 50 100
Sparse flight spotlight mode 3-D imaging of spaceborne SAR based on sparse spectrum and principal component analysis 被引量:2
1
作者 ZHOU Kai LI Daojing +7 位作者 CUI Anjing HAN Dong TIAN He YU Haifeng DU Jianbo LIU Lei ZHU Yu ZHANG Running 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1143-1151,共9页
The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third... The spaceborne synthetic aperture radar(SAR)sparse flight 3-D imaging technology through multiple observations of the cross-track direction is designed to form the cross-track equivalent aperture,and achieve the third dimensionality recognition.In this paper,combined with the actual triple star orbits,a sparse flight spaceborne SAR 3-D imaging method based on the sparse spectrum of interferometry and the principal component analysis(PCA)is presented.Firstly,interferometric processing is utilized to reach an effective sparse representation of radar images in the frequency domain.Secondly,as a method with simple principle and fast calculation,the PCA is introduced to extract the main features of the image spectrum according to its principal characteristics.Finally,the 3-D image can be obtained by inverse transformation of the reconstructed spectrum by the PCA.The simulation results of 4.84 km equivalent cross-track aperture and corresponding 1.78 m cross-track resolution verify the effective suppression of this method on high-frequency sidelobe noise introduced by sparse flight with a sparsity of 49%and random noise introduced by the receiver.Meanwhile,due to the influence of orbit distribution of the actual triple star orbits,the simulation results of the sparse flight with the 7-bit Barker code orbits are given as a comparison and reference to illuminate the significance of orbit distribution for this reconstruction results.This method has prospects for sparse flight 3-D imaging in high latitude areas for its short revisit period. 展开更多
关键词 principal component analysis(PCA) spaceborne synthetic aperture radar(SAR) sparse flight sparse spectrum by interferometry 3-D imaging
在线阅读 下载PDF
基于RPCA-GELM数据驱动的保护测量回路误差评估
2
作者 李振兴 龚世玉 《电力系统保护与控制》 北大核心 2025年第8期24-33,共10页
保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive princip... 保护测量回路是电力系统继电保护的基石,其误差评估对电网安稳运维举足轻重。针对保护测量回路静态隐藏误差可能诱发保护误动/拒动的风险且难以在线监测问题,提出了一种基于递推主元分析和改进灰狼算法优化极限学习机(recursive principal component analysis and extreme learning machine optimized by grey wolf optimization,RPCA-GELM)数据驱动的保护测量回路误差评估方法。首先基于电力系统正常运行下历史数据与实时数据,应用RPCA技术在线更新主元特征模型以缩短评估时间,进一步引入4种统计算法生成4类误差监测特征量,构建误差综合评判方法进行特征优选,提升误差评估准确率。然后针对模型评估精度取决于关键参数C、σ,引入国际无限折叠混沌映射策略对灰狼算法进行优化,以提升参数寻优精度和收敛速度,在此基础上结合ELM算法提出了基于GELM的保护测量回路误差评估方法。最后通过多组对比实验验证了所提方法能实现模型性能优化,且相对其他方法有效提升了保护测量回路误差评估准确率与精度。 展开更多
关键词 保护测量回路 误差评估 递推主元分析 灰狼算法 极限学习机
在线阅读 下载PDF
基于PCA与K-SVD的地震数据去噪方法
3
作者 胡海鹏 徐振旺 +3 位作者 未晛 郭乃川 卢仙娜 陈伟 《石油地球物理勘探》 北大核心 2025年第2期370-381,共12页
噪声干扰严重影响地震信号的质量,研究优秀的地震数据去噪方法是地震勘探领域一项具有挑战的任务。针对传统字典学习K-SVD去噪算法在处理地震数据时的局限性,文中提出了一种结合主成分分析(PCA)和K-SVD的地震数据去噪方法。首先,利用PC... 噪声干扰严重影响地震信号的质量,研究优秀的地震数据去噪方法是地震勘探领域一项具有挑战的任务。针对传统字典学习K-SVD去噪算法在处理地震数据时的局限性,文中提出了一种结合主成分分析(PCA)和K-SVD的地震数据去噪方法。首先,利用PCA对地震数据降维处理,将高维地震数据转换到更低维度的特征空间,有效提取地震信号的主要特征,减少数据冗余,降低计算复杂度;其次,通过PCA与K-SVD联合将信号表示为一组稀疏的基向量线性组合,捕获地震信号的稀疏性质,有效去除噪声;最后,在模拟数据和实际地震数据集上对比三种方法的有效性。数据试算和实际数据试验结果表明,基于PCA与K-SVD的地震数据去噪方法在去除地震数据中噪声的同时,能够保留地震信号的重要特征,显著提高了地震数据的信噪比,与传统KSVD算法相比,不仅有更低的计算成本,而且能够实现更好的去噪效果,为地震数据的去噪处理提供了一种新思路。 展开更多
关键词 稀疏表示 主成分分析 降维处理 K-SVD 去噪
在线阅读 下载PDF
基于二次平滑和特征加权的高光谱图像分类
4
作者 许淇 杨嘉葳 王继燕 《测绘通报》 北大核心 2025年第6期55-61,共7页
针对多种基于图像滤波的空谱联合分类方法在去噪的同时难以保留图像弱边缘的问题,本文提出了一种基于二次平滑和特征加权的高光谱图像分类方法。首先通过最小最大规范化对原始高光谱图像进行预处理,其次采用主成分分析对高光谱图像进行... 针对多种基于图像滤波的空谱联合分类方法在去噪的同时难以保留图像弱边缘的问题,本文提出了一种基于二次平滑和特征加权的高光谱图像分类方法。首先通过最小最大规范化对原始高光谱图像进行预处理,其次采用主成分分析对高光谱图像进行降维,再次运用加窗域变换递归滤波在得到弱化噪声的特征图像的同时保留弱边缘,然后通过L0梯度最小化对特征图像进行二次平滑进一步抑制噪声并增强边缘,并基于方差对特征图像进行加权,最后采用支持向量机进行分类。在两个数据集上进行试验,该方法的分类精度相比基于光谱特征的方法分别提升了14.06%和25.75%,相比于该领域多种滤波算法分别提升0.76%~4.3%和1.5%~5.69%,且分类结果更能反映真实地物类别。 展开更多
关键词 高光谱图像分类 主成分分析 加窗域变换递归滤波 L0梯度最小化 特征加权
在线阅读 下载PDF
基于ITPA-Informer的新能源汽车动力电池可充电容量预测
5
作者 张帅博 赫飞 李宝峰 《电子测量与仪器学报》 北大核心 2025年第3期53-64,共12页
随着新能源汽车的大范围推广,其核心部件——动力电池的状态评估和可充电容量的准确预测对于评估新能源汽车的可靠性、续航里程和剩余价值意义重大。提出了一种基于ITPA-Informer模型的新能源汽车动力电池可充电容量预测方法,首先通过... 随着新能源汽车的大范围推广,其核心部件——动力电池的状态评估和可充电容量的准确预测对于评估新能源汽车的可靠性、续航里程和剩余价值意义重大。提出了一种基于ITPA-Informer模型的新能源汽车动力电池可充电容量预测方法,首先通过安时积分法结合卡尔曼滤波来估算可充电容量,并通过两阶段特征工程(递归特征消除和核主成分分析)来筛选特征并降维,以缓解实际工况下的维数灾难。模型方面,在Informer模型的Decoder中引入了改进的时间模式注意力机制,提取了除采样时间间隔外不同时间尺度下的特征,通过指数衰减因子调整每个时间步对当前预测的贡献度,增强可充电容量随行驶里程增加而逐渐降低的时序依赖性。实验结果表明,所提出的模型在多个评价指标上均优于传统的卷积神经网络(CNN)、长短期记忆(LSTM)和门控循环单元(GRU)模型,并且在不同月份下的运行数据验证了模型具有较好的泛化能力。 展开更多
关键词 可充电容量 安时积分法 递归特征消除 核主成分分析 ITPA机制 INFORMER
在线阅读 下载PDF
Recursive Identification for Hammerstein Systems with State-space Model 被引量:9
6
作者 CHEN Xi FANG Hai-Tao 《自动化学报》 EI CSCD 北大核心 2010年第10期1460-1467,共8页
关键词 自动化系统 稳定性 研究 发展
在线阅读 下载PDF
基于递推PCA的变工况中央空调系统故障诊断 被引量:2
7
作者 彭家浩 邱爱兵 +2 位作者 缪杰 王寅涛 彭晓京 《电子测量与仪器学报》 CSCD 北大核心 2024年第1期134-144,共11页
由于节能以及用户需求等原因,中央空调系统(HVAC)设定温度和风量等工况时常发生改变,这会导致系统模态发生变化,给故障诊断增加难度。为此开展了中央空调变工况下的故障诊断方法研究,首先为了准确模拟HVAC系统变工况及其典型故障,通过... 由于节能以及用户需求等原因,中央空调系统(HVAC)设定温度和风量等工况时常发生改变,这会导致系统模态发生变化,给故障诊断增加难度。为此开展了中央空调变工况下的故障诊断方法研究,首先为了准确模拟HVAC系统变工况及其典型故障,通过专用建筑能源模拟器TRNSYS软件进行建模,并实时采集HVAC系统各传感器数据,随后针对传统PCA算法模型无法适应系统工况变化,容易出现大量误报的问题,发展一种递推主元分析(RPCA)方法,通过利用传感器输出的新数据在线更新原始的PCA模型,即对数据矩阵的均值、方差等进行更新,解决了HVAC系统变工况时参数动态变化所引发的误报的问题,最后基于TRNSYS和MATLAB联合仿真,验证了所提方法的有效性和优越性。 展开更多
关键词 中央空调系统 变工况 故障诊断 递推主元分析
在线阅读 下载PDF
噪声干扰下基于PCA-SF的轴承故障诊断方法 被引量:2
8
作者 季珊珊 杜华东 +3 位作者 管伟琴 王金瑞 陈新龙 李倩 《噪声与振动控制》 CSCD 北大核心 2024年第3期132-137,共6页
机械故障诊断对降低维修成本和预防事故至关重要。振动信号监测是机械故障诊断中一种有效可行的方法。然而,所采集故障信号往往容易受到其他设备噪声的干扰。因此,从受噪声干扰的监测信号中提取与故障相关的周期脉冲是故障诊断的基础,... 机械故障诊断对降低维修成本和预防事故至关重要。振动信号监测是机械故障诊断中一种有效可行的方法。然而,所采集故障信号往往容易受到其他设备噪声的干扰。因此,从受噪声干扰的监测信号中提取与故障相关的周期脉冲是故障诊断的基础,也是难点。为解决此问题,提出一种基于主成分分析(Principal Component Analysis,PCA)和稀疏滤波(Sparse Filtering,SF)的机械故障特征提取方法。具体来说,首先利用PCA提取噪声干扰信号段的主成分,然后利用SF从主成分中提取有效特征。为减小SF模型的过拟合问题,采用L1/2范数对其目标函数进行正则化约束。最后,将提取的特征输入到Softmax分类器中进行故障识别。分别通过一组仿真和实验案例对所提PCA-SF方法的有效性进行验证。实验结果表明,该方法不仅能准确实现故障分类,而且优于其他传统方法。 展开更多
关键词 故障诊断 噪声干扰 主成分分析 稀疏滤波
在线阅读 下载PDF
面向不平衡数据集的浓香型白酒基酒等级分类研究 被引量:4
9
作者 王继华 李兆飞 +2 位作者 杨壮 赵娜 张贵宇 《中国酿造》 CAS 北大核心 2024年第1期184-189,共6页
为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少... 为解决基于气相色谱-质谱联用(GC-MS)仪采集的浓香型白酒基酒等级分类中样本不均衡导致分类模型性能下降的问题,提出了一种面向不平衡数据集的浓香型白酒基酒分类研究。该方法首先采用合成少数类过采样技术(SMOTE)对浓香型基酒样品中少数类样本进行扩充,改善样本的不均衡性;然后结合稀疏主成分分析(SPCA)对GC-MS图谱数据进行降维;最后使用深度森林(DF)分类器建立浓香型白酒基酒分类识别模型。结果表明,使用SMOTE算法对基酒数据集进行平衡之后能够有效提高模型分类准确率,所建立的浓香型基酒分类模型正确率达到96.61%,该分类模型的建立对基酒等级分类能起到一定的指导和借鉴作用。 展开更多
关键词 气相色谱-质谱联用 浓香型白酒基酒 合成少数类过采样技术 稀疏主成分分析 基酒分类
在线阅读 下载PDF
面向阶段任务的携行器材品种确定方法
10
作者 吴巍屹 贾云献 +5 位作者 姜相争 史宪铭 刘洁 刘彬 董恩志 朱曦 《系统工程与电子技术》 EI CSCD 北大核心 2024年第6期2054-2064,共11页
维修器材是有效实施维修保障的物质基础,携行器材品种确定是开展维修器材携行决策的关键。针对执行阶段任务武器装备维修器材品种多、影响因素复杂且关联关系不明确造成的携行器材品种确定困难的现实问题,提出了一种将改进稀疏核主成分... 维修器材是有效实施维修保障的物质基础,携行器材品种确定是开展维修器材携行决策的关键。针对执行阶段任务武器装备维修器材品种多、影响因素复杂且关联关系不明确造成的携行器材品种确定困难的现实问题,提出了一种将改进稀疏核主成分分析(sparse kernel principal component analysis,SKPCA)算法与长短时记忆(long short-term memory,LSTM)神经网络模型相结合的阶段任务携行器材品种确定方法。在分析与任务阶段时序相关的携行器材影响因素及特征指标的基础上,运用基于弹性惩罚的SKPCA降维算法,对器材特征进行降维分析并得到低维稀疏特征向量,通过缩减数据容量增强特征指标的可解释性;运用混沌序列改进花授粉算法(flower pollination algorithm,FPA)优化LSTM超参数,构建混沌FPA-LSTM预测模型,精准进行携行器材品种确定。通过对演习携行器材品种确定算例分析验证了所提方法的科学性和可行性。 展开更多
关键词 携行器材 阶段任务 稀疏核主成分分析 影响因素分析 花授粉算法 长短时记忆神经网络
在线阅读 下载PDF
基于支持向量机的暂态稳定评估双阶段特征选择 被引量:52
11
作者 叶圣永 王晓茹 +1 位作者 刘志刚 钱清泉 《中国电机工程学报》 EI CSCD 北大核心 2010年第31期28-34,共7页
针对电力系统暂态稳定评估的高维性,在构造一组与系统规模无关的原始特征集基础上,提出一种支持向量机双阶段特征选择方法。第1阶段以支持向量机递归特征选择法对原始特征集进行排序,消去对分类不重要的特征,得到一组降维的特征集;第2... 针对电力系统暂态稳定评估的高维性,在构造一组与系统规模无关的原始特征集基础上,提出一种支持向量机双阶段特征选择方法。第1阶段以支持向量机递归特征选择法对原始特征集进行排序,消去对分类不重要的特征,得到一组降维的特征集;第2阶段以径向基核支持向量机为分类器的包装法,用最佳优先搜索算法得到一组近似最优特征子集。最后,在新英格兰39节点和IEEE50机测试系统上,对原始特征集使用所提的特征选择方法,仿真结果证明所提方法的有效性。同时,采用支持向量机双阶段特征选择法得到的特征子集对其他暂态稳定评估模型同样有效。 展开更多
关键词 暂态稳定评估 机器学习 支持向量机 递归特征 选择 包装法 主成分分析法
在线阅读 下载PDF
基于生物阻抗特性的苹果新鲜度无损测定 被引量:14
12
作者 蔡骋 李晓龙 +3 位作者 马惠玲 任小林 黄良妹 曾燕春 《农业机械学报》 EI CAS CSCD 北大核心 2013年第2期147-152,共6页
以红富士苹果为试材,在室温下贮存得到失重率0、5%、10%、15%和果心褐变果实,分别定义为1、2、3、4、5级新鲜度,采用LCR阻抗仪测定各等级共424个果实的14个生物阻抗参数在9个频率点下的126个特征值。通过稀疏主元分析-线性分类器(SPCA-L... 以红富士苹果为试材,在室温下贮存得到失重率0、5%、10%、15%和果心褐变果实,分别定义为1、2、3、4、5级新鲜度,采用LCR阻抗仪测定各等级共424个果实的14个生物阻抗参数在9个频率点下的126个特征值。通过稀疏主元分析-线性分类器(SPCA-LDC)模型试验,得出适宜的选样比例(训练样本数与测试样本数之比)为9∶1,主元数达到前39~45个时分级正确率达到最大值;构成至少39个主元的生物阻抗特征参数为44个;50次重复试验的分级正确率平均值为87.90%。 展开更多
关键词 苹果 新鲜度 生物阻抗 无损测定 稀疏主元分析 线性分类器
在线阅读 下载PDF
偏最小二乘相关算法在系统建模中的两类典型应用 被引量:22
13
作者 尹力 刘强 王惠文 《系统仿真学报》 CAS CSCD 2003年第1期135-137,145,共4页
讨论了偏最小二乘回归(PLSR)的相关算法对两类典型实际系统建模的有效应用。分析了传统的偏最小二乘回归批处理算法及由此产生的一种简化算法的基本原理和技术特点。在此基础上,对原有的递推算法进行了一定程度的改进,直接采用自变量主... 讨论了偏最小二乘回归(PLSR)的相关算法对两类典型实际系统建模的有效应用。分析了传统的偏最小二乘回归批处理算法及由此产生的一种简化算法的基本原理和技术特点。在此基础上,对原有的递推算法进行了一定程度的改进,直接采用自变量主元t的回归系数矩阵P和R来取代旧的数据信息,从而进一步简化了计算过程。针对上述两种算法的特点,分别对无人机费用模型(少样本,多变量)和切削力峰值模型(多样本,少变量)参数进行了估计计算,说明了各自算法的应用优势。 展开更多
关键词 偏最小二乘相关算法 系统建模 参数估计 系统辨识 主成分分析 递推算法
在线阅读 下载PDF
递归滤波与KNN的高光谱遥感图像分类方法 被引量:11
14
作者 涂兵 张晓飞 +2 位作者 张国云 王锦萍 周瑶 《国土资源遥感》 CSCD 北大核心 2019年第1期22-32,共11页
为了有效去除高光谱图像中的噪声,强化空间结构,充分利用地物目标的空间上下文信息,提升高光谱图像的分类精度,提出一种基于递归滤波(recursive filtering,RF)和KNN(k-nearest neighbor)算法的高光谱图像分类方法。首先,利用主成分分析... 为了有效去除高光谱图像中的噪声,强化空间结构,充分利用地物目标的空间上下文信息,提升高光谱图像的分类精度,提出一种基于递归滤波(recursive filtering,RF)和KNN(k-nearest neighbor)算法的高光谱图像分类方法。首先,利用主成分分析法对高光谱图像进行降维;其次,通过RF算法对降维后的主成分图像进行滤波,以增强遥感图像的轮廓特征;然后,采用KNN算法计算测试样本与不同类别训练样本的欧式距离,根据比较k个最小欧式距离的平均值得到测试样本所属类别;最后,在2个典型的数据库上进行实验验证,并分析所提算法中不同参数对分类精度的影响。实验结果表明,RF算法可以有效地去除噪声点,强化图像轮廓,与其他高光谱图像分类方法相比,该方法在分类准确性方面表现突出。 展开更多
关键词 高光谱图像 递归滤波 KNN 主成分分析 欧式距离
在线阅读 下载PDF
基于稀疏表达的超像素跟踪算法 被引量:10
15
作者 齐苑辰 吴成东 +1 位作者 陈东岳 陆云松 《电子与信息学报》 EI CSCD 北大核心 2015年第3期529-535,共7页
该文针对真实场景下视频跟踪过程中可能出现的目标形变、运动和遮挡等问题,该文分别构建了基于超像素局部信息的判别式模型和基于颜色与梯度全局信息的产生式模型,通过两者的结合提升了目标表观特征描述的可区分性和不变性;此外,提出一... 该文针对真实场景下视频跟踪过程中可能出现的目标形变、运动和遮挡等问题,该文分别构建了基于超像素局部信息的判别式模型和基于颜色与梯度全局信息的产生式模型,通过两者的结合提升了目标表观特征描述的可区分性和不变性;此外,提出一种基于稀疏主成分分析的更新策略,在更新特征字典的同时减少其冗余度,在判别式模型的更新阶段分别对每帧图像获得的跟踪结果进行二次判别从而避免漂移现象的发生。实验结果表明,与其它跟踪算法相比,该算法在应对目标姿态变化、背景干扰以及遮挡等复杂情况时具有更好的稳定性和鲁棒性。 展开更多
关键词 计算机视觉 目标跟踪 稀疏表达 超像素分割 稀疏主成分分析
在线阅读 下载PDF
基于稀疏编码和机器学习的多姿态人脸识别算法 被引量:17
16
作者 赵玉兰 苑全德 孟祥萍 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2018年第2期340-346,共7页
为改善多姿态人脸识别效果,设计一种稀疏编码和机器学习相融合的多姿态人脸识别算法.首先对多姿态人脸进行采集和预处理,并提取基于稀疏编码的人脸图像特征;然后采用主成分分析对特征进行处理,降低多姿态人脸识别的特征维数,提高多姿态... 为改善多姿态人脸识别效果,设计一种稀疏编码和机器学习相融合的多姿态人脸识别算法.首先对多姿态人脸进行采集和预处理,并提取基于稀疏编码的人脸图像特征;然后采用主成分分析对特征进行处理,降低多姿态人脸识别的特征维数,提高多姿态人脸识别效率;最后采用机器学习算法中的支持向量机建立多姿态人脸识别分类器,并采用标准人脸数据库和多姿态人脸数据库对算法性能进行验证.验证结果表明,该算法可有效提高多姿态人脸识别正确率,大幅度减少多姿态人脸的平均识别时间,取得了比对比算法更优的识别结果,从而验证了该算法的优越性. 展开更多
关键词 多姿态人脸 识别算法 支持向量机 稀疏编码 主成分分析
在线阅读 下载PDF
原子-分子字典结合的联合扩展加权稀疏表示人脸识别算法 被引量:6
17
作者 胡正平 白帆 +2 位作者 王蒙 孙哲 赵淑欢 《信号处理》 CSCD 北大核心 2016年第7期801-809,共9页
针对训练样本字典学习仅包含全局信息、缺乏局部信息的不足,引入与类别相关的原子字典,提出基于原子与分子字典联合扩展的加权稀疏表示人脸识别方法。首先,对各类训练样本进行PCA学习,得到带标记的训练样本基,构造PCA基原子字典,同时将... 针对训练样本字典学习仅包含全局信息、缺乏局部信息的不足,引入与类别相关的原子字典,提出基于原子与分子字典联合扩展的加权稀疏表示人脸识别方法。首先,对各类训练样本进行PCA学习,得到带标记的训练样本基,构造PCA基原子字典,同时将训练样本字典作为分子字典。进而,利用原子字典与分子字典结合得到扩展字典模型。测试时,根据测试样本与扩展字典基之间的距离进行加权得到与当前测试样本关联的重构字典集,最后对测试样本稀疏重构,利用残差进行分类判别。为验证本文方法有效性,分别在AR、Georgia Tech和CMU PIE人脸数据库上进行实验。 展开更多
关键词 人脸识别 稀疏表示 主成分分析 字典扩展 样本加权
在线阅读 下载PDF
基于主元分析和稀疏表示的SAR图像目标识别 被引量:13
18
作者 刘中杰 庄丽葵 +1 位作者 曹云峰 丁萌 《系统工程与电子技术》 EI CSCD 北大核心 2013年第2期282-286,共5页
现有的合成孔径雷达图像目标识别方法通常包括图像预处理、特征提取和识别算法3部分。但是,预处理算法的自适应性很难得到保证。提出了一种基于主元分析和稀疏表示的目标识别算法。首先,阐述了稀疏表示和重构的基本理论;其次,提出了基... 现有的合成孔径雷达图像目标识别方法通常包括图像预处理、特征提取和识别算法3部分。但是,预处理算法的自适应性很难得到保证。提出了一种基于主元分析和稀疏表示的目标识别算法。首先,阐述了稀疏表示和重构的基本理论;其次,提出了基于主元分析和稀疏表示的合成孔径雷达图像目标识别算法;最后,选取MSTAR数据库中的5类合成孔径雷达目标图像进行仿真。结果表明,在没有预处理的情况下,该算法仍能有效地识别目标,与主元分析和三阶近邻的识别算法相比,具有较高的识别率和鲁棒性。 展开更多
关键词 目标识别 稀疏表示 主元分析 合成孔径雷达图像
在线阅读 下载PDF
基于稀疏PCA的多阶次分数阶傅里叶变换域特征人脸识别 被引量:9
19
作者 王亚星 齐林 +1 位作者 郭新 陈恩庆 《计算机应用研究》 CSCD 北大核心 2016年第4期1253-1257,共5页
鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且... 鉴于人脸识别面临光照、表情和遮挡等因素的影响,提出了一种在分数阶傅里叶变换域稀疏表示的人脸识别。基于分数阶傅里叶变换对光照、表情的鲁棒性,已在图像处理领域得到应用。FRFT幅度随阶次的变换呈现压缩性,而SPCA提取其主要信息,且分为主要信息域和次要信息域,融合两者的互补信息组成混合幅度特征,然后融合混合幅度特征、实部特征和虚部特征,最后融合不同阶次下FRFT域特征。此外提出基于贪婪算法的分数阶阶次选择算法和基于Fisherfaces的权重方法。ORL和AR人脸数据库上识别率分别达到了96.5%和97.6%,充分证明了该算法对人脸识别的有效性。 展开更多
关键词 人脸识别 分数阶傅里叶变换(FRFT) 稀疏主成分分析法(SPCA) 贪婪算法 特征融合
在线阅读 下载PDF
鲁棒的稀疏Lp-模主成分分析 被引量:8
20
作者 李春娜 陈伟杰 邵元海 《自动化学报》 EI CSCD 北大核心 2017年第1期142-151,共10页
主成分分析(Principle component analysis,PCA)是一种被广泛应用的降维方法.然而经典PCA的构造基于L2-模导致了其对离群点和噪声点敏感,同时经典PCA也不具备稀疏性的特点.针对此问题,本文提出基于Lp-模的稀疏主成分分析降维方法 (Lp SP... 主成分分析(Principle component analysis,PCA)是一种被广泛应用的降维方法.然而经典PCA的构造基于L2-模导致了其对离群点和噪声点敏感,同时经典PCA也不具备稀疏性的特点.针对此问题,本文提出基于Lp-模的稀疏主成分分析降维方法 (Lp SPCA).Lp SPCA通过极大化带有稀疏正则项的Lp-模样本方差,使得其在降维的同时保证了稀疏性和鲁棒性.Lp SPCA可用简单的迭代算法求解,并且当p≥1时该算法的收敛性可在理论上保证.此外通过选择不同的p值,Lp SPCA可应用于更广泛的数据类型.人工数据及人脸数据上的实验结果表明,本文所提出的Lp SPCA不仅具有较好的降维效果,并且具有较强的抗噪能力. 展开更多
关键词 主成分分析 稀疏性 鲁棒性 降维 Lp-模
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部