期刊文献+
共找到2,164篇文章
< 1 2 109 >
每页显示 20 50 100
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism 被引量:1
1
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(GRU) self-attention(SA) fractional Fourier transform(FRFT)
在线阅读 下载PDF
Adaptive learning with guaranteed stability for discrete-time recurrent neural networks 被引量:1
2
作者 邓华 吴义虎 段吉安 《Journal of Central South University of Technology》 EI 2007年第5期685-689,共5页
To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real tim... To avoid unstable learning, a stable adaptive learning algorithm was proposed for discrete-time recurrent neural networks. Unlike the dynamic gradient methods, such as the backpropagation through time and the real time recurrent learning, the weights of the recurrent neural networks were updated online in terms of Lyapunov stability theory in the proposed learning algorithm, so the learning stability was guaranteed. With the inversion of the activation function of the recurrent neural networks, the proposed learning algorithm can be easily implemented for solving varying nonlinear adaptive learning problems and fast convergence of the adaptive learning process can be achieved. Simulation experiments in pattern recognition show that only 5 iterations are needed for the storage of a 15×15 binary image pattern and only 9 iterations are needed for the perfect realization of an analog vector by an equilibrium state with the proposed learning algorithm. 展开更多
关键词 recurrent neural networks adaptive learning nonlinear discrete-time systems pattern recognition
在线阅读 下载PDF
An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network 被引量:14
3
作者 Hai-fa Dai Hong-wei Bian +1 位作者 Rong-ying Wang Heng Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期334-340,共7页
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem... In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively. 展开更多
关键词 INERTIAL NAVIGATION system(INS) Global NAVIGATION satellite system(GNSS) Integrated NAVIGATION recurrent neural network(RNN)
在线阅读 下载PDF
A novel recurrent neural network forecasting model for power intelligence center 被引量:6
4
作者 刘吉成 牛东晓 《Journal of Central South University of Technology》 EI 2008年第5期726-732,共7页
In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was... In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision. 展开更多
关键词 load forecasting uncertain element power intelligence center unascertained mathematics recurrent neural network
在线阅读 下载PDF
Recurrent neural network for vehicle dead-reckoning 被引量:2
5
作者 Ma Haibo Zhang Liguo Chen Yangzhou 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第2期351-355,共5页
For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteri... For vehicle integrated navigation systems, real-time estimating states of the dead reckoning (DR) unit is much more difficult than that of the other measuring sensors under indefinite noises and nonlinear characteristics. Compared with the well known, extended Kalman filter (EKF), a recurrent neural network is proposed for the solution, which not only improves the location precision and the adaptive ability of resisting disturbances, but also avoids calculating the analytic derivation and Jacobian matrices of the nonlinear system model. To test the performances of the recurrent neural network, these two methods are used to estimate the state of the vehicle's DR navigation system. Simulation results show that the recurrent neural network is superior to the EKF and is a more ideal filtering method for vehicle DR navigation. 展开更多
关键词 dead reckoning extended Kalman filter recurrent neural network vehicle integrated navigationsystems.
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
6
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control recurrent neural networks Intelligent PID control.
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
7
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Application of Recurrent Wavelet Neural Networks to the Digital Communications Channel Blind Equalization 被引量:1
8
作者 HeShichun HeZhenya 《通信学报》 EI CSCD 北大核心 1997年第3期65-69,共5页
ApplicationofRecurrentWaveletNeuralNetworkstotheDigitalCommunicationsChannelBlindEqualization**Thisworkwassu... ApplicationofRecurrentWaveletNeuralNetworkstotheDigitalCommunicationsChannelBlindEqualization**ThisworkwassupportedbytheClimb... 展开更多
关键词 神经网络 数字通信 非线性信道 符号间干扰 盲道均衡
在线阅读 下载PDF
Stability Analysis for Memristive Recurrent Neural Network and Its Application to Associative Memory 被引量:2
9
作者 Gang Bao Yuanyuan Chen +1 位作者 Siyu Wen Zhicen Lai 《自动化学报》 EI CSCD 北大核心 2017年第12期2244-2252,共9页
在线阅读 下载PDF
Recorded recurrent deep reinforcement learning guidance laws for intercepting endoatmospheric maneuvering missiles
10
作者 Xiaoqi Qiu Peng Lai +1 位作者 Changsheng Gao Wuxing Jing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期457-470,共14页
This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with u... This work proposes a recorded recurrent twin delayed deep deterministic(RRTD3)policy gradient algorithm to solve the challenge of constructing guidance laws for intercepting endoatmospheric maneuvering missiles with uncertainties and observation noise.The attack-defense engagement scenario is modeled as a partially observable Markov decision process(POMDP).Given the benefits of recurrent neural networks(RNNs)in processing sequence information,an RNN layer is incorporated into the agent’s policy network to alleviate the bottleneck of traditional deep reinforcement learning methods while dealing with POMDPs.The measurements from the interceptor’s seeker during each guidance cycle are combined into one sequence as the input to the policy network since the detection frequency of an interceptor is usually higher than its guidance frequency.During training,the hidden states of the RNN layer in the policy network are recorded to overcome the partially observable problem that this RNN layer causes inside the agent.The training curves show that the proposed RRTD3 successfully enhances data efficiency,training speed,and training stability.The test results confirm the advantages of the RRTD3-based guidance laws over some conventional guidance laws. 展开更多
关键词 Endoatmospheric interception Missile guidance Reinforcement learning Markov decision process recurrent neural networks
在线阅读 下载PDF
时滞recurrent神经网络模型的全局渐近稳定性 被引量:2
11
作者 谌新年 《中南林业科技大学学报》 CAS CSCD 北大核心 2007年第3期87-90,共4页
讨论了时滞recurrent神经网络模型的全局渐近稳定性,通过构造适当的Lyapuov函数,利用线性矩阵不等式,给出了一类常时滞recurrent神经网络的新的充分条件,所获的稳定性条件是时滞相关的,稳定性判别条件更宽松.最后通过一个实例说明方法... 讨论了时滞recurrent神经网络模型的全局渐近稳定性,通过构造适当的Lyapuov函数,利用线性矩阵不等式,给出了一类常时滞recurrent神经网络的新的充分条件,所获的稳定性条件是时滞相关的,稳定性判别条件更宽松.最后通过一个实例说明方法的可行性. 展开更多
关键词 时滞recurrent神经网络 全局渐近稳定性 平衡点
在线阅读 下载PDF
The study of fuzzy chaotic neural network based on chaotic method
12
作者 WANG Ke-jun TANG Mo ZHANG Yan 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期64-70,共7页
关键词 模糊混沌神经网络 数理逻辑图 递归模糊神经网络 混沌方法
在线阅读 下载PDF
随机时滞Recurrent神经网络的指数稳定性
13
作者 胡进 《重庆交通学院学报》 2006年第B06期158-161,共4页
研究了随机时滞Recurrent神经网络的稳定性,利用Lyapunov函数和It公式,结合矩阵分析技巧,给出了系统均方指数稳定的充分条件,并由此推得随机时滞Hopfield神经网络和随机时滞细胞神经网络的稳定性条件.
关键词 随机时滞recurrent神经网络 LYAPUNOV函数 Itδ公式 均方指数稳定性
在线阅读 下载PDF
Congestion Control for ATM Networks Based on Diagonal Recurent Neural Networks 被引量:1
14
作者 Huang Yunxian Yan Wei (Air Force Institute of Meteorology,Nanjing 211101) 《通信学报》 EI CSCD 北大核心 1997年第3期92-97,共6页
CongestionControlforATMNetworksBasedonDiagonalRecurentNeuralNetworksHuangYunxianYanWei(AirForceInstituteofMe... CongestionControlforATMNetworksBasedonDiagonalRecurentNeuralNetworksHuangYunxianYanWei(AirForceInstituteofMeteorology,Nanjing... 展开更多
关键词 DIAGONAL recurrent neural networkS CONGESTION CONTROL ATM networkS
全文增补中
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
15
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于门控注意网络模型的天然气管道泄漏检测新方法 被引量:2
16
作者 董宏丽 孙桐 +2 位作者 王闯 杨帆 商柔 《天然气工业》 北大核心 2025年第1期25-36,共12页
准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模... 准确的泄漏检测对维护天然气管道运行安全至关重要。近年来,深度学习已成为天然气管道泄漏检测的常用方法,但由于天然气管道数据具有复杂的时间动态特性,进而导致大多数深度学习方法在识别泄漏类型方面难以取得优异的性能。此外,检测模型的初始超参数选择通常是随机的,这也可能会导致识别性能不稳定。为了提升天然气管道泄漏检测的准确性,提出一种基于麻雀搜索算法的门控注意网络模型(Sparrow Search Algorithm-based Gate Attention Network, SGAN)。首先,为了提取有效且具有鲁棒性的数据特征,采用带交叉熵函数的麻雀搜索算法对门控循环单元的初始超参数进行全局搜索;然后,设计了一种异常注意力机制,通过对数据特征进行加权来放大正常和泄漏数据之间的区分差异;最后,将所提算法应用于天然气管道的泄漏检测。研究结果表明:(1) SGAN模型能够实现模型超参数的自适应优化,并加快了模型的收敛速度,使模型性能更加稳定;(2) SGAN模型通过对正常与泄漏特征进行加权处理,显著提升了数据特征的区分效果;(3) SGAN模型的学习表示能力和泛化能力得到了明显加强,以此提高了对数据的分类性能;(4) SGAN模型能够显著提高天然气管道泄漏检测的准确率和召回率,可减少误报率和漏报率,并且其性能明显优于常规分类算法。结论认为,SGAN模型通过自适应优化和异常注意力机制结合,能精准识别泄漏特征,并快速响应天然气管道中的泄漏情况,有效提升了检测的准确性和可靠性,显著降低了安全事故风险,为天然气管道泄漏检测提供了一种高效、智能的解决新方案。 展开更多
关键词 天然气管道 泄漏检测 麻雀搜索算法 门控循环单元 异常注意力机制 自适应优化 智能
在线阅读 下载PDF
基于多空间维度联合方法改进的BiLSTM出水氨氮预测方法 被引量:2
17
作者 王雷 张煜 +3 位作者 赵艺琨 刘明勇 刘子航 李杰 《中国农村水利水电》 北大核心 2025年第2期17-24,共8页
出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attenti... 出水氨氮作为衡量污水处理厂水质处理工艺的重要指标之一,准确预测污水处理厂出水水质中的氨氮含量对于及时调整处理工艺,保障水环境安全有着重要的作用。提出了一种基于联合多空间维度(Multi-spatial Dimensional Cooperative Attention)改进的双向长短期记忆网络(Bi-directional Long Short-Term Memory,BiLSTM)的水质预测模型,首先通过皮尔逊(Pearson)系数法筛选出与出水氨氮相关性较强的总氮、污泥沉降比和温度3个指标作为模型输入,联合3个维度的强相关信息对未来6 h的出水氨氮进行预测。结果表明,MDCA-BiLSTM模型在融合残差序列后对出水氨氮的预测准确率R2为0.979,并在太平污水处理厂和文昌污水处理厂两个站点收集到的数据集上总氮、总磷和溶解氧的均方根误差分别为0.002、0.003、0.001和0.004、0.003、0.002;预测精度分别为0.959、0.947、0.971和0.962、0.951、0.983;与BiLSTM相比,均方根误差分别降低了0.007、0.007、0.007和0.017、0.006、0.005;预测精度分别提高了0.176、0.183、0.258和0.098、0.109、0.11。同时,该模型在面对未来6、12和24 h的预测步长时,仍能够达到0.956、0.933和0.917的预测精度,说明改进后的模型在预测准确性和鲁棒性方面表现出显著优势。该方法能够有效提高污水处理厂出水氨氮的及其他指标的预测准确性,可作为水资源循环和管理决策的一种有效参考手段,具有较强的实际应用价值。 展开更多
关键词 水质参数 时序预测 时序卷积网络 双向长短期记忆循环神经网络 注意力机制
在线阅读 下载PDF
融入股票论坛UGC时序特征的上市公司财务困境预测方法 被引量:1
18
作者 张玉 蒋翠清 《合肥工业大学学报(自然科学版)》 北大核心 2025年第3期387-394,共8页
股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市... 股票论坛用户生成内容(user generated content,UGC)能反映上市公司利益相关者对公司经营业绩和相关事件的关注和观点,具有及时性和动态性,是对财务信息的有效补充。为有效提取动态变化UGC,文章提出一种融入股票论坛UGC时序特征的上市公司财务困境预测方法。首先,针对用户评论和用户阅读中的时间序列信息,考虑情感特征时序性和互动信息时序性,采用门控循环网络(gated recurrent unit,GRU)模型,挖掘时间序列中的动态信息;其次,不同时间段下发生的事件对财务困境预测的影响程度不同,采用注意力机制聚合重大事件对财务困境预测的影响;最后,基于UGC时序特征,并结合财务特征对上市公司财务困境进行预测。研究表明,所提方法能够有效地提取并聚合时序特征,提高财务困境预测效果。 展开更多
关键词 股票论坛 时序特征 门控循环网络 注意力机制 财务困境预测
在线阅读 下载PDF
基于GAT-GRU的高渗透率分布式新能源接入的配电网无功优化 被引量:1
19
作者 刘会家 滕杰 +1 位作者 冯铃 肖懂 《现代电力》 北大核心 2025年第3期531-541,共11页
无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经... 无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经无法满足低成本–高质量的供电要求。针对以上情况,该文采用图注意力网络(graph attention networks,GAT)结合门控循环单元(gate recurrent unit,GRU)神经网络对配电网的无功做出优化决策,基于GAT-GRU网络,把握节点间相关性特征的同时获取配电网特征时间依赖性。依据决策,通过无功调节设备与智能柔性开关(soft open point,SOP)协同,以解决配电网的无功优化问题。最后,利用改进的IEEE 33节点配电模型对所提方法进行验证,结果表明GAT-GRU网络在电压控制、网络损耗优化等方面具有良好的效果,证明了该方法在无功优化中的有效性与优异性。 展开更多
关键词 无功优化 配电网 图注意力网络 门控循环单元 分布式能源 智能软开关
在线阅读 下载PDF
EMD-GRU组合模型在煤矿瓦斯体积分数预测中的应用 被引量:1
20
作者 盛武 樊斌斌 《安全与环境学报》 北大核心 2025年第4期1339-1348,共10页
为更好厘清瓦斯体积分数数据中长期依赖关系,实现更加精确的瓦斯体积分数预测,提出一种基于经验模态分解算法—门控循环单元(Empirical Mode Decomposition-Gated Recurrent Unit,EMD-GRU)组合的瓦斯体积分数预测方法。该方法通过经验... 为更好厘清瓦斯体积分数数据中长期依赖关系,实现更加精确的瓦斯体积分数预测,提出一种基于经验模态分解算法—门控循环单元(Empirical Mode Decomposition-Gated Recurrent Unit,EMD-GRU)组合的瓦斯体积分数预测方法。该方法通过经验模态分解算法(Empirical Mode Decomposition,EMD)将复杂瓦斯体积分数数据分解为多个平稳序列,并对每个序列采用双层门控循环单元(Gated Recurrent Uni,GRU)进行时序预测;然后,将各分量预测结果叠加重构,得到最终的预测结果;最后,将EMD-GRU模型应用于某矿智能综采工作面瓦斯气体体积分数预测。结果表明:EMD-GRU模型较经验模态分解-长短期记忆(Empirical Mode Decomposition-Long Short-Term Memory,EMD-LSTM)神经网络模型、传统长短期记忆(Long Short-Term Memory,LSTM)神经网络模型和GRU模型,其均方误差(ERMS)分别减少11.57%、33.86%、48.78%,平均绝对百分比误差(EMAP)分别降低19.55%、28.23%和32.76%,同时,在测试集中有着更高的拟合效果(R2=0.9789),验证了该模型有较高的精准度和泛化性。 展开更多
关键词 安全工程 经验模态分解 门控循环单元 井下监测数据 瓦斯体积分数预测
在线阅读 下载PDF
上一页 1 2 109 下一页 到第
使用帮助 返回顶部