期刊文献+
共找到1,709篇文章
< 1 2 86 >
每页显示 20 50 100
Observed-based adaptive neural tracking control for nonlinear systems with unknown control directions and input delay
1
作者 DENG Yuxuan WANG Qingling 《Journal of Systems Engineering and Electronics》 2025年第1期269-279,共11页
Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncerta... Enhancing the stability and performance of practical control systems in the presence of nonlinearity,time delay,and uncertainty remains a significant challenge.Particularly,a class of strict-feedback nonlinear uncertain systems characterized by unknown control directions and time-varying input delay lacks comprehensive solutions.In this paper,we propose an observerbased adaptive tracking controller to address this gap.Neural networks are utilized to handle uncertainty,and a unique coordinate transformation is employed to untangle the coupling between input delay and unknown control directions.Subsequently,a new auxiliary signal counters the impact of time-varying input delay,while a Nussbaum function is introduced to solve the problem of unknown control directions.The leverage of an advanced dynamic surface control technique avoids the“complexity explosion”and reduces boundary layer errors.Synthesizing these techniques ensures that all the closed-loop signals are semi-globally uniformly ultimately bounded(SGUUB),and the tracking error converges to a small region around the origin by selecting suitable parameters.Simulation examples are provided to demonstrate the feasibility of the proposed approach. 展开更多
关键词 adaptive neural network dynamic surface control unknown control direction input delay
在线阅读 下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver 被引量:1
2
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control BP neural network pid Moving chimera grid
在线阅读 下载PDF
Global approximation based adaptive RBF neural network control for supercavitating vehicles 被引量:12
3
作者 LI Yang LIU Mingyong +1 位作者 ZHANG Xiaojian PENG Xingguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第4期797-804,共8页
A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly wit... A global approximation based adaptive radial basis function(RBF) neural network control strategy is proposed for the trajectory tracking control of supercavitating vehicles(SV).A nominal model is built firstly with the unknown disturbance.Next, the control scheme is established consisting of a computed torque controller(CTC) for the practical vehicle and an RBF neural network controller to estimate model error between the practical vehicle and the nominal model. The network weights are adapted by employing a Lyapunov-based design. Then it is shown by the Lyapunov theory that the trajectory tracking errors asymptotically converge to a small neighborhood of zero. The control performance of the proposed controller is illustrated by simulation. 展开更多
关键词 radial basis function (RBF) neural network computedtorque controller (CTC) adaptive control supercavitating vehicle(SV)
在线阅读 下载PDF
Adaptive neural network tracking control for a class of unknown nonlinear time-delay systems 被引量:5
4
作者 Chen Weisheng Li Junmin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期611-618,共8页
For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a r... For a class of unknown nonlinear time-delay systems, an adaptive neural network (NN) control design approach is proposed. Backstepping, domination and adaptive bounding design technique are combined to construct a robust memoryless adaptive NN tracking controller. Unknown time-delay functions are approximated by NNs, such that the requirement on the nonlinear time-delay functions is relaxed. Based on Lyapunov-Krasoviskii functional, the sem-global uniformly ultimately boundedness (UUB) of all the signals in the closed-loop system is proved. The arbitrary output tracking accuracy is achieved by tuning the design parameters. The feasibility is investigated by an illustrative simulation example. 展开更多
关键词 nonlinear time-delay system neural network adaptive bounding technique memoryless adaptive NN controller.
在线阅读 下载PDF
Neural network based adaptive sliding mode control of uncertain nonlinear systems 被引量:4
5
作者 Ghania Debbache Noureddine Goléa 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第1期119-128,共10页
The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activat... The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results. 展开更多
关键词 nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness.
在线阅读 下载PDF
Adaptive control of system with hysteresis using neural networks 被引量:4
6
作者 Li Chuntao Tan Yonghong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第1期163-167,共5页
An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the thr... An adaptive control scheme is developed for a class of single-input nonlinear systems preceded by unknown hysteresis, which is a non-differentiable and multi-value mapping nonlinearity. The controller based on the three-layer neural network (NN), whose weights are derived from Lyapunov stability analysis, guarantees closed-loop semiglobal stability and convergence of the tracking errors to a small residual set. An example is used to confirm the effectiveness of the proposed control scheme. 展开更多
关键词 neural networks HYSTERESIS adaptive control preisach model.
在线阅读 下载PDF
Adaptive neural network based sliding mode altitude control for a quadrotor UAV 被引量:4
7
作者 Hadi RAZMI 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2654-2663,共10页
Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the ... Reasons and realities such as being non-linear of dynamical equations,being lightweight and unstable nature of quadrotor,along with internal and external disturbances and parametric uncertainties,have caused that the controller design for these quadrotors is considered the challenging issue of the day.In this work,an adaptive sliding mode controller based on neural network is proposed to control the altitude of a quadrotor.The error and error derivative of the altitude of a quadrotor are the inputs of neural network and altitude sliding surface variable is its output.Neural network estimates the sliding surface variable adaptively according to the conditions of quadrotor and sets the altitude of a quadrotor equal to the desired value.The proposed controller stability has been proven by Lyapunov theory and it is shown that all system states reach to sliding surface and are remaining in it.The superiority of the proposed control method has been proven by comparison and simulation results. 展开更多
关键词 adaptive sliding mode controller analog neural network(ANN) altitude control of quadrotor parametric uncertainty
在线阅读 下载PDF
Decentralized direct adaptive neural network control for a class of interconnected systems 被引量:2
8
作者 Zhang Tianping Mei Jiandong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期374-380,共7页
The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of slid... The problem of direct adaptive neural network control for a class of large-scale systems with unknown function control gains and the high-order interconneetions is studied in this paper. Based on the principle of sliding mode control and the approximation capability of multilayer neural networks, a design scheme of decentralized di- rect adaptive sliding mode controller is proposed. The plant dynamic uncertainty and modeling errors are adaptively compensated by adjusted the weights and sliding mode gains on-line for each subsystem using only local informa- tion. According to the Lyapunov method, the closed-loop adaptive control system is proven to be globally stable, with tracking errors converging to a neighborhood of zero. Simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 neural networks decentralized control sliding mode control adaptive control global stability.
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
9
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control recurrent neural networks Intelligent pid control.
在线阅读 下载PDF
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
10
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
11
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
Trajectory linearization control of an aerospace vehicle based on RBF neural network 被引量:6
12
作者 Xue Yali Jiang Changsheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第4期799-805,共7页
An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The infl... An enhanced trajectory linearization control (TLC) structure based on radial basis function neural network (RBFNN) and its application on an aerospace vehicle (ASV) flight control system are presensted. The influence of unknown disturbances and uncertainties is reduced by RBFNN thanks to its approaching ability, and a robustifying itera is used to overcome the approximate error of RBFNN. The parameters adaptive adjusting laws are designed on the Lyapunov theory. The uniform ultimate boundedness of all signals of the composite closed-loop system is proved based on Lyapunov theory. Finally, the flight control system of an ASV is designed based on the proposed method. Simulation results demonstrate the effectiveness and robustness of the designed approach. 展开更多
关键词 adaptive control trajectory linearization control radial basis function neural network aerospace vehicle.
在线阅读 下载PDF
An Adaptive Identification and Control SchemeUsing Radial Basis Function Networks 被引量:2
13
作者 Chen Zengqiang He Jiangfeng Yuan Zhuzhi (Department of Computer and System Science, Nankai University, Tianjin 300071, P. R. China)(Received July 12, 1998) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1999年第1期54-61,共8页
In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an... In this paper, adaptive identification and control of nonlinear dynamical systems are investigated using radial basis function networks (RBF). Firstly, a novel approach to train the RBF is introduced, which employs an adaptive fuzzy generalized learning vector quantization (AFGLVQ) technique and recursive least squares algorithm with variable forgetting factor (VRLS). The AFGLVQ adjusts the centers of the RBF while the VRLS updates the connection weights of the network. The identification algorithm has the properties of rapid convergence and persistent adaptability that make it suitable for real-time control. Secondly, on the basis of the one-step ahead RBF predictor, the control law is optimized iteratively through a numerical stable Davidon's least squares-based (SDLS) minimization approach. Four nonlinear examples are simulated to demonstrate the effectiveness of the identification and control algorithms. 展开更多
关键词 neural networks adaptive control Nonlinear control Radial basis function networks Recursive least squares.
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
14
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 Fuzzy logic neural networks adaptive control Nonlinear dynamic system.
在线阅读 下载PDF
Hardware-in-loop adaptive neural control for a tiltable V-tail morphing aircraft 被引量:1
15
作者 Fu-xiang Qiao Jing-ping Shi +1 位作者 Xiao-bo Qu Yong-xi Lyu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第4期197-211,共15页
This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom ... This paper proposes an adaptive neural control(ANC)method for the coupled nonlinear model of a novel type of embedded surface morphing aircraft which has a tiltable V-tail.A nonlinear model with sixdegrees-of-freedom is established.The first-order sliding mode differentiator(FSMD)is applied to the control scheme to avoid the problem of“differential explosion”.Radial basis function neural networks are introduced to estimate the uncertainty and external disturbance of the model,and an ANC controller is proposed based on this design idea.The stability of the proposed ANC controller is proved using Lyapunov theory,and the tracking error of the closed-loop system is semi-globally uniformly bounded.The effectiveness and robustness of the proposed method are verified by numerical simulations and hardware-in-the-loop(HIL)simulations. 展开更多
关键词 Morphing aircraft Back-stepping control adaptive control neural networks Radial basis function
在线阅读 下载PDF
Robust adaptive control for a class of uncertain non-affine nonlinear systems using neural state feedback compensation 被引量:1
16
作者 赵石铁 高宪文 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期636-643,共8页
A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback c... A robust adaptive control is proposed for a class of uncertain nonlinear non-affine SISO systems. In order to approximate the unknown nonlinear function, an affine type neural network(ATNN) and neural state feedback compensation are used, and then to compensate the approximation error and external disturbance, a robust control term is employed. By Lyapunov stability analysis for the closed-loop system, it is proven that tracking errors asymptotically converge to zero. Moreover, an observer is designed to estimate the system states because all the states may not be available for measurements. Furthermore, the adaptation laws of neural networks and the robust controller are given based on the Lyapunov stability theory. Finally, two simulation examples are presented to demonstrate the effectiveness of the proposed control method. Finally, two simulation examples show that the proposed method exhibits strong robustness, fast response and small tracking error, even for the non-affine nonlinear system with external disturbance, which confirms the effectiveness of the proposed approach. 展开更多
关键词 adaptive control neural networks uncertain non-affine systems state feedback Lyapunov stability
在线阅读 下载PDF
Distributed Adaptive Tracking Control for Unknown Nonlinear Networked Systems 被引量:2
17
作者 PENG Jun-Min WANG Jia-Nan YE Xu-Dong 《自动化学报》 EI CSCD 北大核心 2013年第10期1729-1735,共7页
在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧... 在这份报纸,我们为易于一个积极领导人,其仅仅说罐头的非线性的不明确的联网的系统的一个类调查合作追踪问题部分被测量,输入隧道也被扰乱。由神经网络(NN ) 的优点技术,追随者的动力学适当地在某些基础功能上被建模,他们的输入隧道被假定也被扰乱。在这个工作,基于观察员的适应控制为可以有非相同的动力学的非线性的联网的系统被建议。它被适当地在一些图状况下面选择参数经由 Lyapunov 理论(UUB ) 显示出全面系统最终一致地合作地被围住。最后,几数字模拟为建议适应控制器的确认被详细描述。 展开更多
关键词 非线性网络系统 自适应跟踪控制 LYAPUNOV理论 分布式 自适应控制器 一致最终有界 网络化系统 动力非线性
在线阅读 下载PDF
Time-delay Positive Feedback Control for Nonlinear Time-delay Systems with Neural Network Compensation 被引量:2
18
作者 NA Jing REN Xue-Mei HUANG Hong 《自动化学报》 EI CSCD 北大核心 2008年第9期1196-1202,共7页
新适应时间延期积极反馈控制器(ATPFC ) 为非线性的时间延期系统的一个班被介绍。建议控制计划由神经基于网络的鉴定和时间延期组成积极反馈控制器。与一个特殊动态鉴定模型一起合并的二个高顺序的神经网络(HONN ) 被采用识别非线性的... 新适应时间延期积极反馈控制器(ATPFC ) 为非线性的时间延期系统的一个班被介绍。建议控制计划由神经基于网络的鉴定和时间延期组成积极反馈控制器。与一个特殊动态鉴定模型一起合并的二个高顺序的神经网络(HONN ) 被采用识别非线性的系统。基于识别模型,本地 linearization 赔偿被用来处理系统的未知非线性。线性化的系统的一个 time-delay-free 逆模型和一个需要的引用模型被利用组成反馈控制器,它能导致系统输出追踪一个引用模型的轨道。为鉴定和靠近环的控制系统的追踪的错误的严密稳定性分析借助于 Lyapunov 稳定性标准被提供。模拟结果被包括表明建议计划的有效性。 展开更多
关键词 正反馈 控制系统 自动化系统 人工神经网络
在线阅读 下载PDF
Adaptive neural control for a class of uncertain stochastic nonlinear systems with dead-zone
19
作者 Zhaoxu Yu Hongbin Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期500-506,共7页
The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neur... The problem of adaptive stabilization is addressed for a class of uncertain stochastic nonlinear strict-feedback systems with both unknown dead-zone and unknown gain functions.By using the backstepping method and neural network(NN) parameterization,a novel adaptive neural control scheme which contains fewer learning parameters is developed to solve the stabilization problem of such systems.Meanwhile,stability analysis is presented to guarantee that all the error variables are semi-globally uniformly ultimately bounded with desired probability in a compact set.The effectiveness of the proposed design is illustrated by simulation results. 展开更多
关键词 adaptive control neural network(NN) BACKSTEPPING stochastic nonlinear system.
在线阅读 下载PDF
Congestion Control for ATM Networks Based on Diagonal Recurent Neural Networks 被引量:1
20
作者 Huang Yunxian Yan Wei (Air Force Institute of Meteorology,Nanjing 211101) 《通信学报》 EI CSCD 北大核心 1997年第3期92-97,共6页
CongestionControlforATMNetworksBasedonDiagonalRecurentNeuralNetworksHuangYunxianYanWei(AirForceInstituteofMe... CongestionControlforATMNetworksBasedonDiagonalRecurentNeuralNetworksHuangYunxianYanWei(AirForceInstituteofMeteorology,Nanjing... 展开更多
关键词 DIAGONAL recurrent neural networkS CONGESTION control ATM networkS
全文增补中
上一页 1 2 86 下一页 到第
使用帮助 返回顶部