期刊文献+
共找到209篇文章
< 1 2 11 >
每页显示 20 50 100
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network 被引量:1
1
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
在线阅读 下载PDF
基于ECA-TCN的数据中心磁盘故障预测 被引量:1
2
作者 张铭泉 王宝兴 《智能系统学报》 北大核心 2025年第2期389-399,共11页
随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-tem... 随着数据中心规模的不断扩大,磁盘故障对数据中心的运行稳定性产生越来越大的影响。当前预测方法在面对大规模、高维度和长序列的磁盘运行数据时仍存在不足。本文提出了一种高效通道注意力时间卷积网络(efficient channel attention-temporal convolutional network,ECA-TCN)模型,通过结合传统卷积神经网络一维卷积的优势,融入扩张卷积和残差结构,并引入注意力机制,该模型能够提高磁盘故障预测的准确性和稳定性。在实验中,将ECA-TCN模型与其他经典深度学习方法进行了比较,实验结果表明,ECA-TCN模型在磁盘故障预测任务上具有较高的准确性和稳定性。 展开更多
关键词 磁盘故障预测 长短时记忆网络 循环神经网络 扩张卷积 高效通道注意力机制 神经网络模型 时间序列预测 深度学习优化
在线阅读 下载PDF
基于时空动态图的交通流量预测方法研究
3
作者 孟祥福 谢伟鹏 崔江燕 《智能系统学报》 北大核心 2025年第4期776-786,共11页
为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动... 为改进现有交通流量预测方法在建模时空数据和捕捉动态空间相关性方面的不足,提出了一种时空动态图卷积网络(spatio-temporal dynamic graph network,STDGNet)。该模型采用带嵌入层的编码器–解码器架构,通过动态图生成模块从数据驱动的角度挖掘潜在的时空关系,并重构每个时间步的节点动态关联图。嵌入层使用时空自适应嵌入方法建模交通数据的内在时空关系和时间信息;编码器部分利用时空记忆注意力机制,从全局视角对时空特征进行建模;解码器部分将图卷积模块注入循环神经网络中,以同时捕捉时间和空间依赖关系,并输出未来流量情况。实验结果表明,所提模型与最优基线模型解耦动态时空图神经网络(decoupled dynamic spatial-temporal graph neural network,D2STGNN)相比,平均绝对误差降低了1.63%,模型训练时间缩短了近2.5倍。本研究有效提升了交通流量预测的准确性与效率,为智能交通系统的建设提供了有力支撑。 展开更多
关键词 交通流量 时空数据 混合模型 注意力机制 时空动态图 图卷积神经网络 循环神经网络 深度学习
在线阅读 下载PDF
基于PSO-RNN算法的多级感应线圈炮非参数建模与出口速度预测
4
作者 秦涛涛 季思源 +1 位作者 雷琳 郑占锋 《兵工学报》 北大核心 2025年第7期87-97,共11页
针对多级同步感应线圈发射器建模涉及多物理场耦合、现有优化方法迭代时间长等问题,基于粒子群优化-循环神经网络(Particle Swarm Optimization-Recurrent Neural Network,PSO-RNN)算法建立多级同步感应线圈发射器非参数模型,并进行电... 针对多级同步感应线圈发射器建模涉及多物理场耦合、现有优化方法迭代时间长等问题,基于粒子群优化-循环神经网络(Particle Swarm Optimization-Recurrent Neural Network,PSO-RNN)算法建立多级同步感应线圈发射器非参数模型,并进行电枢出口速度预测。通过正交结合随机实验的方法,获得以线圈匝数、触发时间、触发位置为输入,出口速度为输出的样本集;采用循环神经网络算法对样本集进行训练并建立非参数模型;通过粒子群优化算法进一步优化RNN神经网络参数,提高非参数模型的预测性能;采用建立的模型预测出口速度并与实验结果对比。结果表明:所建立非参数模型的均方预测误差、平均绝对百分比误差、均方根误差分别为0.0028、0.036、2.18,且经过PSO优化后模型的3项评价指标分别降低39%、38%、46%,提高了预测性能;PSO-RNN非参数模型的一致性较好且预测的平均值与实验测得的出口速度相差1.2 m/s,误差百分比为1.8%,小于标准值5%。将PSO-RNN算法用于同步感应线圈发射器的非参数建模可行且对出口速度的预测较为准确,可为多级同步感应线圈发射器的工程设计提供新思路。 展开更多
关键词 多级同步感应线圈炮 非参数模型 循环神经网络 粒子群优化 出口速度预测
在线阅读 下载PDF
基于注意力循环神经网络的联合深度推荐模型 被引量:1
5
作者 郭东坡 何彬 +1 位作者 张明焱 段超 《现代电子技术》 北大核心 2025年第1期80-84,共5页
为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和... 为了向用户推荐符合兴趣偏好的项目,设计一种基于注意力循环神经网络的联合深度推荐模型。将双层注意力机制设置于网络中,该模型由五个部分构成,在输入层中生成联合深度推荐模型的输入矩阵,通过序列编码层对项目评论文本语义展开正向和反向编码,获得隐藏状态输出,并将其输入双层注意力机制中,提取项目特征,利用全连接层提取用户偏好特征。在预测层中建立项目与用户的交互模型,获得项目评分,为用户推荐高评分的项目。为了提高模型精度,加权融合MSE损失函数、CE损失函数和RK损失函数建立组合损失函数,对深度联合训练模型展开训练,提高模型的推荐性能。仿真结果表明,所提方法具有良好的推荐效果,能够适应不断变化的市场需求和用户行为。 展开更多
关键词 双层注意力机制 循环神经网络 用户偏好 组合损失函数 交互模型 联合深度推荐模型
在线阅读 下载PDF
基于RCMAC干扰观测器的高超声速飞行控制 被引量:5
6
作者 吴浩 杨业 +1 位作者 王永骥 郑总准 《系统工程与电子技术》 EI CSCD 北大核心 2010年第8期1722-1726,共5页
利用自回归小脑模型神经网络(recurrent cerebella model neural network,RCMAC)良好的非线性逼近能力和自学习能力,结合反馈线性化和反演控制方法,提出了一种自适应非线性控制策略,用于高速再入飞行器控制系统的设计。该方案将RCMAC干... 利用自回归小脑模型神经网络(recurrent cerebella model neural network,RCMAC)良好的非线性逼近能力和自学习能力,结合反馈线性化和反演控制方法,提出了一种自适应非线性控制策略,用于高速再入飞行器控制系统的设计。该方案将RCMAC干扰观测器(recurrent cerebella disturbance observer,RCDO)用于估计系统模型的不确定项,同时采用反演控制方式设计伪线性控制项,并利用符号函数逼近误差的上界,根据Lyapunov稳定性理论设计了权值更新规则,保证闭环系统信号有界。高速再入飞行器的六自由度仿真结果验证了方法的有效性和鲁棒性。 展开更多
关键词 自回归小脑神经网络 干扰观测器 高超声速飞行器 反演控制
在线阅读 下载PDF
深度学习在心力衰竭检测中的应用综述
7
作者 王永威 魏德健 +1 位作者 曹慧 姜良 《计算机科学与探索》 北大核心 2025年第1期65-78,共14页
随着生物医学技术的发展,利用生物信号进行心力衰竭的早期诊断已成为提高患者生存率和降低治疗成本的关键策略。在此背景下,深度学习技术的迅猛发展为心力衰竭检测开辟了新路径。系统地综述了深度学习在心力衰竭检测中的最新进展和应用... 随着生物医学技术的发展,利用生物信号进行心力衰竭的早期诊断已成为提高患者生存率和降低治疗成本的关键策略。在此背景下,深度学习技术的迅猛发展为心力衰竭检测开辟了新路径。系统地综述了深度学习在心力衰竭检测中的最新进展和应用。概述了心力衰竭检测涉及的主要生物医学信号和公开数据集。详细分析了深度学习在心力衰竭诊断领域的应用及其发展,特别是对卷积神经网络和长短期记忆网络处理心电图、心率变异性、心音等关键生物医学信号的能力进行了深入分析,总结了这些技术的优势、局限性,并对各类模型性能进行了比较。探讨了通过融合多种人工智能技术所构建的混合模型在提升检测精度和模型泛化能力方面的潜力,以及如何利用模型的可解释性来增加检测过程的透明度,提升医生的信任度。最后总结了当前研究存在的不足,并对未来研究方向提出展望,强调了跨学科合作在推动心力衰竭检测技术进步中的重要性。 展开更多
关键词 心力衰竭 生物医学信号 深度学习 卷积神经网络 循环神经网络 混合模型
在线阅读 下载PDF
融合RNN与稀疏自注意力的文本摘要方法 被引量:1
8
作者 刘钟 唐宏 +1 位作者 王宁喆 朱传润 《计算机工程》 北大核心 2025年第1期312-320,共9页
随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影... 随着深度学习的高速发展,基于序列到序列(Seq2Seq)架构的文本摘要方法成为研究焦点,但现有大多数文本摘要模型受限于长期依赖,忽略了注意力机制复杂度以及词序信息对文本摘要生成的影响,生成的摘要丢失关键信息,偏离原文内容与意图,影响用户体验。为了解决上述问题,提出一种基于Transformer改进的融合递归神经网络(RNN)与稀疏自注意力的文本摘要方法。首先采用窗口RNN模块,将输入文本按窗口划分,每个RNN对窗口内词序信息进行压缩,并通过窗口级别的表示整合为整个文本的表示,进而增强模型捕获局部依赖的能力;其次采用基于递归循环机制的缓存模块,循环缓存上一文本片段的信息到当前片段,允许模型更好地捕获长期依赖和全局信息;最后采用稀疏自注意力模块,通过块稀疏矩阵对注意力矩阵按块划分,关注并筛选出重要令牌对,而不是在所有令牌对上平均分配注意力,从而降低注意力的时间复杂度,提高长文本摘要任务的效率。实验结果表明,该方法在数据集text8、enwik8上的BPC分数相比于LoBART模型降低了0.02,在数据集wikitext-103以及ptb上的PPL分数相比于LoBART模型分别降低了1.0以上,验证了该方法的可行性与有效性。 展开更多
关键词 序列到序列架构 文本摘要 Transformer模型 递归神经网络 递归循环机制 稀疏自注意力机制
在线阅读 下载PDF
基于WRF-Solar和VMD-BiGRU的超短期太阳辐射订正预报研究
9
作者 段济开 陈香月 +3 位作者 王文鹏 常明恒 陈伯龙 左洪超 《太阳能学报》 北大核心 2025年第1期710-716,共7页
太阳辐射具有很强的非线性特征,给光伏发电并网带来诸多严重挑战。针对该问题,基于数值天气预报模式、机器学习和变分模态分解发展了一种订正预报方法:1)利用WRF-Solar模式对光伏站点的地表太阳辐射进行预报;2)采用变分模态分解(VMD)方... 太阳辐射具有很强的非线性特征,给光伏发电并网带来诸多严重挑战。针对该问题,基于数值天气预报模式、机器学习和变分模态分解发展了一种订正预报方法:1)利用WRF-Solar模式对光伏站点的地表太阳辐射进行预报;2)采用变分模态分解(VMD)方法对其与观测值的偏差进行分解;3)利用双向循环神经网络(BiGRU)对分解后的各分量进行训练和预报;4)对各分量的预报进行求和后结合WRF-Solar的预报结果得到地表太阳辐射的订正预报结果。试验结果表明,经过VMD-BiGRU模型订正后,相比于WRF-Solar的预报结果 MAE和RMSE的提升百分比分别为87.39%和87.29%,相关系数提高了0.25。 展开更多
关键词 WRF-Solar模式 太阳辐射 机器学习 循环神经网络 变分模态分解
在线阅读 下载PDF
大数据背景下基于改进RNN的低压配电网线损智能分析方法 被引量:7
10
作者 李学军 张世元 《沈阳工业大学学报》 北大核心 2025年第1期130-136,共7页
【目的】在电力系统中,线损率是衡量电网系统设计、运维和管理水平的重要经济技术指标,对于保障电网的稳定经济运行、提高供电效率具有重要意义。然而,在用户数量激增、用能特征多样化的大数据背景下,线损率的计算评价工作面临较大挑战... 【目的】在电力系统中,线损率是衡量电网系统设计、运维和管理水平的重要经济技术指标,对于保障电网的稳定经济运行、提高供电效率具有重要意义。然而,在用户数量激增、用能特征多样化的大数据背景下,线损率的计算评价工作面临较大挑战。传统线损计算方法依赖于电网参数,精细化程度偏低,计算准确率不佳。【方法】针对该问题,提出了一种基于改进循环神经网络(RNN)的低压配电网线损智能分析方法,旨在通过智能化手段提高线损计算的准确性和效率。方法利用K-means算法对智能配电网的海量用户数据进行分类预处理,以降低数据冗余度。采用层次分析法(AHP)从分类数据中提取线损指标,这些指标随后被输入到深度学习模型中,其中,核心深度学习模型是由卷积神经网络(CNN)和改进长短时记忆网络(LSTM)模型融合而成,该模型能够挖掘配电网数据特征,实现线损的智能分析。通过IEEE33节点的仿真模型进行实验验证,充分展示所提方法的有效性。【结果】实验结果表明,所提方法的均方误差(MSE)和相对误差百分数(RE)分别为3.15 MW和2.43%,计算精度较高。与现有方法相比,所提方法在大数据背景下的配电网线损智能分析中具有明显优势,能够全面考虑各种配电网的影响因素,获得更精准的线损计算结果。此外,通过与两种经典文献方法进行对比实验,进一步验证所提方法的性能优势。【结论】基于改进RNN模型的低压配电网线损智能分析方法通过K-means算法和AHP预处理提取线损指标,再利用CNN-LSTM模型进行深入分析,有效提高了线损计算的准确性和效率。该方法主要针对低压配电网线路侧的线损进行分析,对于更高等级电压的线损分析尚未深入研究,但其在低压配电网线损智能分析中显示出优异的结果,具有实际应用价值。未来的研究将扩展到更广泛的校验分析,以提高方法的全面性和可靠性。此外,该方法的提出也为智能配电网的进一步研究和应用提供了新的思路和工具,有助于推动智能电网技术的发展和应用。通过这种方法,不仅可以提高线损计算的准确性,还能为电网的优化管理提供科学依据,对于提升电网运行效率、降低能源损耗具有重要的实际意义。随着技术的不断进步和数据量的日益增加,智能化的线损分析方法将成为电力系统运维中不可或缺的一部分。 展开更多
关键词 大数据 低压配电网 K-MEANS聚类 层次分析法 特征提取 CNN-LSTM模型 智能线损分析 循环神经网络
在线阅读 下载PDF
基于GRU-NN预测模型的压电作动器MPC-KAN控制方法
11
作者 郭辰星 李自成 徐瑞瑞 《压电与声光》 北大核心 2025年第1期157-162,171,共7页
为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型... 为了提高压电作动器(PEAs)的轨迹跟踪性能,提出了一种基于门控递归单元(GRU)神经网络(NN)预测模型的Kolmogorov-Arnold网络前馈模型预测控制(MPC-KAN)。与神经网络逆模型控制不同,该方法使用GRU-NN正向建模,并根据模型预测结果调整模型预测控制(MPC)的输出。首先,根据线性化模型选择GRU-NN的训练输入特征,并训练该网络。然后,为了提高优化效果和缩短优化时间,将麻雀搜索算法(SSA)用作MPC优化器,并建立Kolmogorov-Arnold网络(KAN)以替代SSA优化。该方法的有效性在PEAs平台上得到验证,与传统方法相比,控制精度提高了约30%。 展开更多
关键词 压电陶瓷作动器 高精度跟踪 模型预测控制 GRU网络 KAN网络
在线阅读 下载PDF
基于串联深度神经网络的跨坐式单轨车辆轮胎径向载荷识别模型 被引量:1
12
作者 任利惠 周荣笙 +1 位作者 季元进 曾俊玮 《中国铁道科学》 北大核心 2025年第1期136-148,共13页
针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度... 针对识别跨坐式单轨车辆轮胎径向载荷时直接测量法成本昂贵、定制复杂,而基于物理模型的方法稳定性差、计算量大、精度不足的问题,建立车辆动力学模型,兼顾物理关系合理性和测量便捷性,选取可通过能观性分解得到的车体和构架振动加速度以及易直接测量的位移、转角和角速度等车辆姿态信息构建数据集,并验证动力学模型的准确性;预处理数据集时,向其中混入噪声增强数据鲁棒性,进行归一化处理便于数据计算,扩充时间步长增强数据的时序关联性;在此基础上,构建基于一维卷积神经网络(1DCNN)和双向门控循环单元(BiGRU)串联深度神经网络的轮胎径向载荷识别模型,采用Hyperband算法进行模型的超参数优化,在学习率、批量大小和优化器种类最优下通过设置合理的卷积核尺寸和门控循环单元个数规划各层数据维度,在1DCNN中引入逐点卷积和膨胀卷积以提升模型识别效果,并从准确性、鲁棒性和泛化性3个方面对模型的载荷识别效果进行评估。结果表明:与传统模型相比,基于1DCNN-BiGRU的载荷识别模型均方误差较低,低于0.106,准确性较高;数据混入信噪比低至27 dB噪声时仍具有较好的识别效果,鲁棒性较强;在不同的曲线半径、曲线超高率和惯性参数扰动工况下仍能维持较好的识别效果,泛化性较好。 展开更多
关键词 载荷识别 跨坐式单轨车辆 卷积神经网络 双向门控循环单元 超参数优化 车辆动力学模型
在线阅读 下载PDF
CastNet:深度学习定量降水临近预报模型
13
作者 曾小团 谭肇 +5 位作者 沈玉伟 范娇 黄荣成 周弘媛 梁潇 黄大剑 《气象》 北大核心 2025年第4期400-416,共17页
为了提高降水临近预报的准确性,提出一种深度神经网络相结合的对抗神经网络模型CastNet。该模型借助循环神经网络捕捉雷达回波数据的时空特征,运用对抗神经网络模拟云团生消变化,再将光流约束融入神经网络引导模型训练,加速神经网络的... 为了提高降水临近预报的准确性,提出一种深度神经网络相结合的对抗神经网络模型CastNet。该模型借助循环神经网络捕捉雷达回波数据的时空特征,运用对抗神经网络模拟云团生消变化,再将光流约束融入神经网络引导模型训练,加速神经网络的学习过程并增强模型的时空一致性,有效地解决了预报模糊性问题,提升降水强度与位置的准确性。对2023年5—10月广西及周边区域的9次主要降水过程进行检验,结果表明:在不同降水强度(≥0.1、≥2、≥7、≥15、≥25、≥40 mm·h^(-1))下,SWAN 2.0的平均TS评分分别为0.458、0.270、0.085、0.034、0.014和0.003;SWAN 3.0的平均TS评分分别为0.452、0.402、0.225、0.129、0.085和0.048;CastNet模型的平均TS评分分别为0.439、0.397、0.225、0.139、0.104和0.073。即:除个别持平外,CastNet在≥7 mm·h^(-1)及以上高降水强度中评分高于SWAN 2.0和SWAN 3.0。此外,随着预报时效延长,CastNet的相对优势更为明显。 展开更多
关键词 短时强降水 定量降水预报 深度学习模型 循环神经网络 对抗神经网络
在线阅读 下载PDF
基于自注意力层的神经网络弹道落点预测方法
14
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力层 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于CNN-GRU-ISSA-XGBoost的短期光伏功率预测 被引量:5
15
作者 岳有军 吴明沅 +1 位作者 王红君 赵辉 《南京信息工程大学学报》 CAS 北大核心 2024年第2期231-238,共8页
针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率... 针对光伏功率随机性及波动性大,单一预测模型往往难以准确分析历史数据波动规律,从而导致预测精度不高的问题,提出一种基于卷积神经网络-门控循环单元(CNN-GRU)和改进麻雀搜索算法(ISSA)优化的极限梯度提升(XGBoost)模型的短期光伏功率预测组合模型.首先去除历史数据中的异常值并对其进行归一化处理,利用主成分分析法(PCA)进行特征选取,以便更好地识别影响光伏功率的关键因素.然后采用CNN网络提取数据的空间特征,再经过GRU网络提取时间特征,针对XGBoost模型手动配置参数困难、随机性大的问题,利用ISSA对模型超参数寻优.最后对两种方法预测的结果用误差倒数法减小误差的同时对权重进行更新,得到新的预测值,从而完成对光伏功率的预测.实验结果表明,所提出的CNN-GRU-ISSA-XGBoost组合模型具有更强的适应性和更高的精度. 展开更多
关键词 光伏功率预测 改进麻雀搜索算法 卷积神经网络 门控循环单元 XGBoost模型
在线阅读 下载PDF
基于循环神经网络的2-DOF软体机械臂运动建模与控制 被引量:2
16
作者 丁卫 郑云 +1 位作者 钟宋义 杨扬 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期522-531,共10页
因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、... 因现有软体机械臂材料刚度小、模量不稳定,导致建模与控制难度大.提出一种基于循环神经网络(recurrentneuralnetwork,RNN)的方法,用于二自由度(two-degree-of-freedom,2-DOF)软体机械臂的运动建模与控制.使用动作捕捉仪采集不同气压、负载下的位置坐标,并将其导入门控循环单元(gated recurrentunit,GRU)神经网络模型进行训练.当调节超参数至网络结构最优时,测试集准确度可达98.87%.在此基础上,构建气压与负载到末端位置的映射函数.实验结果表明,本方法可将机械臂的控制精度提升至6»8 mm,显著降低了软体机器人的控制与建模难度. 展开更多
关键词 循环神经网络 门控循环单元模型 软体机械臂 建模与控制
在线阅读 下载PDF
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:11
17
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
在线阅读 下载PDF
基于用户性格和语义-结构特征的文本评论情感分类方法 被引量:1
18
作者 王友卫 刘瑞 凤丽洲 《电子学报》 EI CAS CSCD 北大核心 2024年第5期1657-1669,共13页
由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for ... 由于传统文本评论情感分类方法通常忽略用户性格对于情感分类结果的影响,提出一种基于用户性格和语义-结构特征的文本评论情感分类方法(User Personality and Semantic-structural Features based Sentiment Classification Method for Text Comments,BF_Bi GAC).依据大五人格模型能够有效表达用户性格的优势,通过计算不同维度性格得分,从评论文本中获取用户性格特征.利用双向门控循环单元(Bidirectional Gated Recurrent Unit,Bi GRU)和卷积神经网络(Convolutional Neural Network,CNN)可以有效提取文本上下文语义特征和局部结构特征的优势,提出一种基于Bi GRU、CNN和双层注意力机制的文本语义-结构特征获取方法.为区分不同类型特征的影响,引入混合注意力层实现对用户性格特征和文本语义-结构特征的有效融合,以此获得最终的文本向量表达.在IMDB、Yelp-2、Yelp-5及Ekman四个评论数据集上的对比实验结果表明,BF_Bi GAC在分类准确率(Accuracy)和加权macro F_(1)值(F_(w))上均获得较好表现,相对于拼接Bi GRU、CNN的情感分类方法(Sentiment Classification Method Concatenating Bi GRU and CNN,Bi G-RU_CNN)在Accuracy值上分别提升0.020、0.012、0.017及0.011,相对于拼接CNN、Bi GRU的情感分类方法(Sentiment Classification Method Concatenating CNN and Bi GRU,Conv Bi LSTM)F_(w)值上分别提升0.022、0.013、0.028及0.023;相对于预训练模型BERT和Ro BERTa,BF_Bi GAC在保证分类精度的情况下获得了较高的运行效率. 展开更多
关键词 情感分类 大五人格模型 双向门控循环单元 卷积神经网络 注意力机制
在线阅读 下载PDF
基于自回归小波神经网络的机械臂自适应滑模控制 被引量:1
19
作者 杨佳 吴佩林 +2 位作者 杨理 寇东山 余斌 《空间控制技术与应用》 CSCD 北大核心 2024年第3期68-76,共9页
针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种... 针对机械臂存在模型不确定和未知扰动的问题,提出一种动力学模型参数分块逼近的神经网络非奇异终端滑模(nonsingular terminal sliding mode, NTSM)控制方法.为加快系统跟踪误差的收敛速度,避免传统终端滑模存在的奇异性问题,采用一种非奇异终端滑模面.利用多组自回归小波神经网络(self-recurrent wavelet neural network, SRWNN)分块逼近系统未知的动力学模型参数,并采用自适应更新律调整权重.通过积分控制项补偿SRWNN的逼近误差,并使用Lyapunov稳定性理论证明了系统稳定性.使用MATLAB进行仿真分析,分块SRWNN滑模控制与滑模控制、整体SRWNN滑模控制相比,关节角度跟踪误差的平均稳态误差分别降低了31.9%、76.5%,表明此方法是一种可靠、有效的轨迹跟踪控制方法. 展开更多
关键词 自回归小波神经网络 非奇异终端滑模 动力学模型 轨迹跟踪
在线阅读 下载PDF
基于“分解-重组-预测-集成”模式的Heston期权定价模型
20
作者 姚远 张朝阳 +3 位作者 赵阳 李艳 李方方 黄蕾 《运筹与管理》 CSSCI CSCD 北大核心 2024年第2期172-178,共7页
精准合理地期权定价对于改善市场流动性、优化投资者结构、稳定金融市场拥有重要意义。本文提出了一种结合“分解-重组-预测-集成”思想的Heston期权定价模型,该模型利用Heston模型进行初始定价,通过自适应噪声完全集合经验模态分解(CEE... 精准合理地期权定价对于改善市场流动性、优化投资者结构、稳定金融市场拥有重要意义。本文提出了一种结合“分解-重组-预测-集成”思想的Heston期权定价模型,该模型利用Heston模型进行初始定价,通过自适应噪声完全集合经验模态分解(CEEMDAN)对定价误差进行分解与重构,获得高频项、低频项及趋势项,然后使用门控循环单元(GRU)估计高频项及低频项,使用差分整合移动平均自回归(ARIMA)估计趋势项,所有估计值集成汇总得到定价误差估计值,最后使用定价误差估计值对Heston模型的初始定价结果进行修正后获得最终定价结果。使用华夏上证50ETF、华泰柏瑞沪深300ETF和嘉实沪深300ETF期权数据验证模型,实证结果显示,在模型结构更加简单的基础上,本文提出模型的精度普遍优于基准模型。 展开更多
关键词 期权定价 Heston模型 神经网络 门控循环单元 CEEMDAN
在线阅读 下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部