期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recognition of dynamically varying PRI modulation via deep learning and recurrence plot 被引量:1
1
作者 WANG Pengcheng LIU Weisong LIU Zheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第4期815-826,共12页
Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classificati... Recognition of pulse repetition interval(PRI)modulation is a fundamental task in the interpretation of radar intentions.However,the existing PRI modulation recognition methods mainly focus on single-label classification of PRI sequences.The prerequisite for the effectiveness of these methods is that the PRI sequences are perfectly divided according to different modulation types before identification,while the actual situation is that radar pulses reach the receiver continuously,and there is no completely reliable method to achieve this division in the case of non-cooperative reception.Based on the above actual needs,this paper implements an algorithm based on the recurrence plot technique and the multi-target detection model,which does not need to divide the PRI sequence in advance.Compared with the sliding window method,it can more effectively realize the recognition of the dynamically varying PRI mo dulation. 展开更多
关键词 you look only once(YOLO) pulse repetition interval(PRI)modulation recurrence plot
在线阅读 下载PDF
A pre-warning system of abnormal energy consumption in lead smelting based on LSSVR-RP-CI 被引量:2
2
作者 WANG Hong-cai FANG Hong-ru +1 位作者 MENG Lei XU Feng-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2175-2184,共10页
The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are ... The pre-warning of abnormal energy consumption is important for energy conservation of industrial engineering. However, related studies on the lead smelting industries which usually have a huge energy consumption are rarely reported. Therefore, a pre-warning system was established in this study based on the intelligent prediction of energy consumption and the identification of abnormal energy consumption. A least square support vector regression (LSSVR) model optimized by the adaptive genetic algorithm was developed to predict the energy consumption in the process of lead smelting. A recurrence plots (RP) analysis and a confidence intervals (CI) analysis were conducted to quantitatively confirm the stationary degree of energy consumption and the normal range of energy consumption, respectively, to realize the identification of abnormal energy consumption. It is found the prediction accuracy of LSSVR model can exceed 90% based on the comparison between the actual and predicted data. The energy consumption is considered to be non-stationary if the correlation coefficient between the time series of periodicity and energy consumption is larger than that between the time series of periodicity and Lorenz. Additionally, the lower limit and upper limit of normal energy consumption are obtained. 展开更多
关键词 lead smelting energy consumption least square support vector regression (LSSVR) recurrence plots (RP) confidence intervals (CI)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部