Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion ...Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.展开更多
Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of...Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of the vegetation,and it is therefore possible to take such diversities as forest or vegetation dynamic proxies.The present work selected 36 Pleistocene faunas of large mammals from monsoon-dominated provinces in China as materials and calculated the diversities of forest dwellers and herbivores with different approaches,as well as the consensus gradient coefficients of all the selected faunas in different flora regionalized subkingdoms.The results show that with the evolution and transitions of the East Asian summer and winter monsoon intensities,the forest vitality decreased while steppe vitality increased gradually in a fluctuated way from the Early Pleistocene to the Late Pleistocene,especially in the provinces north of the Qinling-Huaihe Line.The analyses of such diversities of the faunas can help to determine the forest dynamic proxies.Moreover,the correlation of such proxies to loess-paleosol sequences and marine isotope stages can in turn help to improve the accuracy of dating fauna ages and paleoenvironment reconstruction.展开更多
The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea o...The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction(UOR).Herein,we report the loosely porous CoOOH nano-architecture(CoOOH LPNAs)with hydrophilic surface and abundant oxygen vacancies(Ov)on carbon fiber paper(CFP)by electrochemical reconstruction of the CoP nanoneedles precursor.The resulting three-dimensional electrode exhibited an impressively low potential of 1.38 V at 1000 mA·cm^(−2) and excellent durability for UOR.Furthermore,when tested in an anion exchange membrane(AEM)electrolyzer,it required only 1.53 V at 1000 mA·cm^(−2) for industrial urea-assisted water splitting and operated stably for 100 h without degrada-tion.Experimental and theoretical investigations revealed that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together.As a result,the adsorption and desorption processes of reactants and intermediates in UOR could be finely tuned,thereby significantly reducing ther-modynamic barriers.Additionally,the superhydrophilic self-supported nanoarray structure facilitated rapid gas bubble release,improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation,thereby improving both catalytic activity and stability at high current densities.展开更多
Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual...Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.展开更多
This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low ...This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.展开更多
This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy ...This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.展开更多
Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging du...Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.展开更多
Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural feat...Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement pattern...The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.展开更多
In this study,the morphology and ultrastructure of the compound eye of L.lewisii were investigated using scanning electron microscopy(SEM),transmission electron microscopy(TEM),microcomputed tomography(μCT),and 3D re...In this study,the morphology and ultrastructure of the compound eye of L.lewisii were investigated using scanning electron microscopy(SEM),transmission electron microscopy(TEM),microcomputed tomography(μCT),and 3D reconstruction.The compound eye of L.lewisii was of the apposition type,with an average of 121.88±7.64 ommatidia in males and 119.00±4.71 ommatidia in females.Each ommatidium was composed of a biconvex cornea,an acone consisting of four cone cells,eight retinular cells along with the rhabdom,two primary pigment cells,and numerous secondary pigment cells.The open type of rhabdom in L.lewisii consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells(R1~R6)and two vertically attached central rhabdomeres contributed by R7 and R8 respectively.The orientation of microvilli suggested a weak sensitivity to polarized light perception.展开更多
In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationshi...In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
Objective:While age has been recognized as a noteworthy factor in preoperative graft selection,the correlation between age and hamstring autograft diameter has been the subject of continued debate within the scientifi...Objective:While age has been recognized as a noteworthy factor in preoperative graft selection,the correlation between age and hamstring autograft diameter has been the subject of continued debate within the scientific community.This study aimed to explore the correlation between the diameter of autologous tendon grafts and age in anterior cruciate ligament reconstruction(ACLR).Methods:A retrospective review of 388 patients who underwent arthroscopic ACLR with hamstring autografts was performed.Patients were grouped by age to analyze differences in hamstring autograft dia-meter and tendon cross-sectional area(CSA).We explored the correlations between age and graft diameter and between age and the CSA of the popliteal tendon while controlling for the influence of other pertinent variables.Results:Compared with female patients,male patients presented significantly greater autograft diameters and hamstring tendon CSAs(P<0.05).Notably,graft diameter and hamstring tendon CSA varied significantly across different age groups(P<0.05);patients aged>32 years were substantially more likely to have a graft diameter exceeding 8 mm and a CSA surpassing 18.5 mm^(2) than their≤32-year-old counterparts were(P<0.05).Conclusion:This study revealed that graft diameter varies across different age groups,with age independently influencing graft diameter.展开更多
This work introduces a novel method for measuring thin film thickness,employing a multi-wavelength method that significantly reduces the need for broad-spectrum data.Unlike traditional techniques that require sev⁃eral...This work introduces a novel method for measuring thin film thickness,employing a multi-wavelength method that significantly reduces the need for broad-spectrum data.Unlike traditional techniques that require sev⁃eral hundred spectral data points,the multi-wavelength method achieves precise thickness measurements with data from only 10 wavelengths.This innovation not only simplifies the process of spectral measurement analysis but also enables accurate real-time thickness measurement on industrial coating production lines.The method effectively reconstructs and fits the visible spectrum(400-800 nm)using a minimal amount of data,while maintaining measurement error within 7.1%.This advancement lays the foundation for more practical and efficient thin film thickness determination techniques in various industrial applications.展开更多
X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread appl...X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.展开更多
A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d...A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.展开更多
文摘Mining operation, especially underground coal mining, always has the remarkable risks of ground control. Passive seismic velocity tomography based on simultaneous iterative reconstructive technique (SIRT) inversion is used to deduce the stress redistribution around the longwall mining panel. The mining-induced microseismic events were recorded by mounting an array of receivers on the surface, above the active panel. After processing and filtering the seismic data, the three-dimensional tomography images of the p-wave velocity variations by SIRT passive seismic velocity tomography were provided. To display the velocity changes on coal seam level and subsequently to infer the stress redistribution, these three-dimensional tomograms into the coal seam level were sliced. In addition, the boundary element method (BEM) was used to simulate the stress redistribution. The results show that the inferred stresses from the passive seismic tomograms are conformed to numerical models and theoretical concept of the stress redistribution around the longwall panel. In velocity tomograms, the main zones of the stress redistribution arotmd the panel, including front and side abutment pressures, and gob stress are obvious and also the movement of stress zones along the face advancement is evident. Moreover, the effect of the advance rate of the face on the stress redistribution is demonstrated in tomography images. The research result proves that the SIRT passive seismic velocity tomography has an ultimate potential for monitoring the changes of stress redistribution around the longwall mining panel continuously and subsequently to improve safety of mining operations.
文摘Monsoon has an important impact on the development of vegetation that subsequently has significant influence on the evolution of plant consumers.The diversities of forest dwellers or herbivores follow the evolution of the vegetation,and it is therefore possible to take such diversities as forest or vegetation dynamic proxies.The present work selected 36 Pleistocene faunas of large mammals from monsoon-dominated provinces in China as materials and calculated the diversities of forest dwellers and herbivores with different approaches,as well as the consensus gradient coefficients of all the selected faunas in different flora regionalized subkingdoms.The results show that with the evolution and transitions of the East Asian summer and winter monsoon intensities,the forest vitality decreased while steppe vitality increased gradually in a fluctuated way from the Early Pleistocene to the Late Pleistocene,especially in the provinces north of the Qinling-Huaihe Line.The analyses of such diversities of the faunas can help to determine the forest dynamic proxies.Moreover,the correlation of such proxies to loess-paleosol sequences and marine isotope stages can in turn help to improve the accuracy of dating fauna ages and paleoenvironment reconstruction.
基金supported by the Applied Basic Research Program of Yunnan Province(202101BE070001-032)Yunnan Major Scientific and Technological Projects(No.202202AG050001).
文摘The conversion of urea-containing wastewater into clean hydrogen energy has gained increasing attention.However,challenges remain,particularly with sluggish catalytic kinetics and limited long-term stability of urea oxidation reaction(UOR).Herein,we report the loosely porous CoOOH nano-architecture(CoOOH LPNAs)with hydrophilic surface and abundant oxygen vacancies(Ov)on carbon fiber paper(CFP)by electrochemical reconstruction of the CoP nanoneedles precursor.The resulting three-dimensional electrode exhibited an impressively low potential of 1.38 V at 1000 mA·cm^(−2) and excellent durability for UOR.Furthermore,when tested in an anion exchange membrane(AEM)electrolyzer,it required only 1.53 V at 1000 mA·cm^(−2) for industrial urea-assisted water splitting and operated stably for 100 h without degrada-tion.Experimental and theoretical investigations revealed that rich oxygen vacancies effectively modulate the electronic structure of the CoOOH while creating unique Co3-triangle sites with Co atoms close together.As a result,the adsorption and desorption processes of reactants and intermediates in UOR could be finely tuned,thereby significantly reducing ther-modynamic barriers.Additionally,the superhydrophilic self-supported nanoarray structure facilitated rapid gas bubble release,improving the overall efficiency of the reaction and preventing potential catalyst detachment caused by bubble accumulation,thereby improving both catalytic activity and stability at high current densities.
文摘Image super-resolution reconstruction technology is currently widely used in medical imaging,video surveillance,and industrial quality inspection.It not only enhances image quality but also improves details and visual perception,significantly increasing the utility of low-resolution images.In this study,an improved image superresolution reconstruction model based on Generative Adversarial Networks(SRGAN)was proposed.This model introduced a channel and spatial attention mechanism(CSAB)in the generator,allowing it to effectively leverage the information from the input image to enhance feature representations and capture important details.The discriminator was designed with an improved PatchGAN architecture,which more accurately captured local details and texture information of the image.With these enhanced generator and discriminator architectures and an optimized loss function design,this method demonstrated superior performance in image quality assessment metrics.Experimental results showed that this model outperforms traditional methods,presenting more detailed and realistic image details in the visual effects.
基金Support by the Fundamental Research Funds for the Central Universities(2024300443)the National Natural Science Foundation of China(NSFC)Young Scientists Fund(62405131)。
文摘This article proposes a three-dimensional light field reconstruction method based on neural radiation field(NeRF)called Infrared NeRF for low resolution thermal infrared scenes.Based on the characteristics of the low resolution thermal infrared imaging,various optimizations have been carried out to improve the speed and accuracy of thermal infrared 3D reconstruction.Firstly,inspired by Boltzmann's law of thermal radiation,distance is incorporated into the NeRF model for the first time,resulting in a nonlinear propagation of a single ray and a more accurate description of the physical property that infrared radiation intensity decreases with increasing distance.Secondly,in terms of improving inference speed,based on the phenomenon of high and low frequency distribution of foreground and background in infrared images,a multi ray non-uniform light synthesis strategy is proposed to make the model pay more attention to foreground objects in the scene,reduce the distribution of light in the background,and significantly reduce training time without reducing accuracy.In addition,compared to visible light scenes,infrared images only have a single channel,so fewer network parameters are required.Experiments using the same training data and data filtering method showed that,compared to the original NeRF,the improved network achieved an average improvement of 13.8%and 4.62%in PSNR and SSIM,respectively,while an average decreases of 46%in LPIPS.And thanks to the optimization of network layers and data filtering methods,training only takes about 25%of the original method's time to achieve convergence.Finally,for scenes with weak backgrounds,this article improves the inference speed of the model by 4-6 times compared to the original NeRF by limiting the query interval of the model.
基金supported by the Natural Science Foundation of Shanxi Province(Grant No.202203021221120)The Open Fund of MCRI-Shannxi Laboratory of Energetic Materials(Grant No.204-J-2024-2622)。
文摘This study prepared a class of RDX-based composite microspheres(RAF)containing ADN and FKM2602.The reaction kinetics of RAF composite microspheres were effectively improved by maintaining the system's high energy and safety performance.In the close packing state,when the heating rate is rapid,the thermal stability of RAF composite microspheres is better than that of RDX;the close packing state will reduce the degree of freedom of RDX and ADN reaction but will increase the degree of freedom of RAF composite microsphere reaction.The thermal conductivity of RAF composite microspheres is close to that of RDX.In the ignition experiment,the flame of RAF composite microspheres can be maintained without the external heat source.Regarding safety,the H50of RAF composite microspheres was 274.04%higher than that of RDX.The detonation velocity of RAF composite microspheres is slightly higher than that of raw material RDX.Overall,these findings highlight the effectiveness of ADN in enhancing the reaction kinetics of RDX-based composites.
基金National Natural Science Foundation of China(Grant Nos.62005049 and 62072110)Natural Science Foundation of Fujian Province(Grant No.2020J01451).
文摘Accurate segmentation of camouflage objects in aerial imagery is vital for improving the efficiency of UAV-based reconnaissance and rescue missions.However,camouflage object segmentation is increasingly challenging due to advances in both camouflage materials and biological mimicry.Although multispectral-RGB based technology shows promise,conventional dual-aperture multispectral-RGB imaging systems are constrained by imprecise and time-consuming registration and fusion across different modalities,limiting their performance.Here,we propose the Reconstructed Multispectral-RGB Fusion Network(RMRF-Net),which reconstructs RGB images into multispectral ones,enabling efficient multimodal segmentation using only an RGB camera.Specifically,RMRF-Net employs a divergentsimilarity feature correction strategy to minimize reconstruction errors and includes an efficient boundary-aware decoder to enhance object contours.Notably,we establish the first real-world aerial multispectral-RGB semantic segmentation of camouflage objects dataset,including 11 object categories.Experimental results demonstrate that RMRF-Net outperforms existing methods,achieving 17.38 FPS on the NVIDIA Jetson AGX Orin,with only a 0.96%drop in mIoU compared to the RTX 3090,showing its practical applicability in multimodal remote sensing.
基金Project(2022RC3048)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject support by the Guangdong Greenway Technology Co.Ltd.,China。
文摘Hard carbon is regarded as a promising anode material for sodium-ion batteries,while it remains a huge challenge to initial coulombic efficiency and rate performance.Numerous studies show that critical structural features in hard carbon,namely defects,crystallites,and close pores,are directly responsible for the electrochemical performance in sodium-ion batteries.Here,we employ bamboo-derived hard carbon to systematically regulate the defects and crystallites in hard carbon by introducing mechanical activation.Benefiting from ball milling,the intermediate product with a high specific area more easily transforms into hard carbon,which possesses abundant closed pores,effective interlayer spacing,and suitable sodium storage defects,helping to improve the sodium ion storage performance.As a result,the hard carbon ball milled for 20 min presents a high reversible capacity of 315.2 mA·h/g at 17.5 mA/g with an initial coulombic efficiency up to 79.3%,as well as good rate and cycling performances.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
文摘The Tyrannosauridae,which is characterized by specialized pachydont dentition and putative bone-cracking predatory strategies,is one of the most extensively studied theropod lineages.Although tooth replacement patterns,crucial for understanding feeding behaviors,have been thoroughly studied in this group,studies on non-tyrannosaurid tyrannosauroids are relatively scarce.This study utilizes high-resolution CT data to investigate the tooth replacement pattern in two specimens of Guanlong wucaii,a Late Jurassic tyrannosauroid,and provides insights into the evolution of tooth replacement across Tyrannosauroidea.Second-generation replacement teeth,a rarity observed mainly in giant predatory theropods(e.g.some tyrannosaurids),were detected in the dentary dentition of the juvenile Guanlong.Zahnreihen reconstructions display a consistent cephalad alternating tooth replacement pattern in the maxilla and the dentary of both of the examined individuals,with Z-spacing values exceeding 2.0.As Guanlong grows,the Z-spacing value in the maxillary dentition increases,resembling the ontogenetic changes documented in the Tyrannosauridae.Additionally,like Tarbosaurus,Guanlong also displays a discontinuity between the tooth replacement waves at the premaxilla-maxilla boundary.This study thus demonstrates that some tyrannosaurid-like tooth replacement patterns were acquired before the origin of the Tyrannosauridae.
文摘In this study,the morphology and ultrastructure of the compound eye of L.lewisii were investigated using scanning electron microscopy(SEM),transmission electron microscopy(TEM),microcomputed tomography(μCT),and 3D reconstruction.The compound eye of L.lewisii was of the apposition type,with an average of 121.88±7.64 ommatidia in males and 119.00±4.71 ommatidia in females.Each ommatidium was composed of a biconvex cornea,an acone consisting of four cone cells,eight retinular cells along with the rhabdom,two primary pigment cells,and numerous secondary pigment cells.The open type of rhabdom in L.lewisii consists of six peripheral rhabdomeres contributed by the six peripheral retinular cells(R1~R6)and two vertically attached central rhabdomeres contributed by R7 and R8 respectively.The orientation of microvilli suggested a weak sensitivity to polarized light perception.
文摘In recent years,anomaly detection has attracted much attention in industrial production.As traditional anomaly detection methods usually rely on direct comparison of samples,they often ignore the intrinsic relationship between samples,resulting in poor accuracy in recognizing anomalous samples.To address this problem,a knowledge distillation anomaly detection method based on feature reconstruction was proposed in this study.Knowledge distillation was performed after inverting the structure of the teacher-student network to avoid the teacher-student network sharing the same inputs and similar structure.Representability was improved by using feature splicing to unify features at different levels,and the merged features were processed and reconstructed using an improved Transformer.The experimental results show that the proposed method achieves better performance on the MVTec dataset,verifying its effectiveness and feasibility in anomaly detection tasks.This study provides a new idea to improve the accuracy and efficiency of anomaly detection.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金This work was supported by the Fundamental Research Funds for the Central Universities(WK9110000143)the USTC Research Funds of the Double First-Class Initiative(YD9110002060)the Health Research Program of Anhui(AHWJ2022b060)。
文摘Objective:While age has been recognized as a noteworthy factor in preoperative graft selection,the correlation between age and hamstring autograft diameter has been the subject of continued debate within the scientific community.This study aimed to explore the correlation between the diameter of autologous tendon grafts and age in anterior cruciate ligament reconstruction(ACLR).Methods:A retrospective review of 388 patients who underwent arthroscopic ACLR with hamstring autografts was performed.Patients were grouped by age to analyze differences in hamstring autograft dia-meter and tendon cross-sectional area(CSA).We explored the correlations between age and graft diameter and between age and the CSA of the popliteal tendon while controlling for the influence of other pertinent variables.Results:Compared with female patients,male patients presented significantly greater autograft diameters and hamstring tendon CSAs(P<0.05).Notably,graft diameter and hamstring tendon CSA varied significantly across different age groups(P<0.05);patients aged>32 years were substantially more likely to have a graft diameter exceeding 8 mm and a CSA surpassing 18.5 mm^(2) than their≤32-year-old counterparts were(P<0.05).Conclusion:This study revealed that graft diameter varies across different age groups,with age independently influencing graft diameter.
基金Supported by National Key R&D Program of China(2021YFA0715500)National Natural Science Foundation of China(NSFC)(12227901)+2 种基金Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB0580000)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Chinese Academy of Sciences President's International Fellowship Initiative(2021PT0007).
文摘This work introduces a novel method for measuring thin film thickness,employing a multi-wavelength method that significantly reduces the need for broad-spectrum data.Unlike traditional techniques that require sev⁃eral hundred spectral data points,the multi-wavelength method achieves precise thickness measurements with data from only 10 wavelengths.This innovation not only simplifies the process of spectral measurement analysis but also enables accurate real-time thickness measurement on industrial coating production lines.The method effectively reconstructs and fits the visible spectrum(400-800 nm)using a minimal amount of data,while maintaining measurement error within 7.1%.This advancement lays the foundation for more practical and efficient thin film thickness determination techniques in various industrial applications.
文摘X-ray computed tomography(CT)has been an important technology in paleontology for several decades.It helps researchers to acquire detailed anatomical structures of fossils non-destructively.Despite its widespread application,developing an efficient and user-friendly method for segmenting CT data continues to be a formidable challenge in the field.Most CT data segmentation software operates on 2D interfaces,which limits flexibility for real-time adjustments in 3D segmentation.Here,we introduce Curves Mode in Drishti Paint 3.2,an open-source tool for CT data segmentation.Drishti Paint 3.2 allows users to manually or semi-automatically segment the CT data in both 2D and 3D environments,providing a novel solution for revisualizing CT data in paleontological studies.
基金Projects(41572277,41877229)supported by the National Natural Science Foundation of ChinaProject(2015A030313118)supported by the Natural Science Foundation of Guangdong Province,ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘A small problem about soil particle regularization and contacts but essential to geotechnical engineering was studied.The soils sourced from Guangzhou and Xiamen were sieved into five different particle scale ranges(d<0.075 mm,0.075 mm≤d<0.1 mm,0.1 mm≤d<0.2 mm,0.2 mm≤d<0.5 mm and 0.5 mm≤d<1.0 mm)to study the structures and particle contacts of granite residual soil.The X-ray micro computed tomography method was used to reconstruct the microstructure of granite residual soil.The particle was identified and regularized using principal component analysis(PCA).The particle contacts and geometrical characteristics in 3D space were analyzed and summarized using statistical analyses.The results demonstrate that the main types of contact among the particles are face-face,face-angle,face-edge,edge-edge,edge-angle and angle-angle contacts for particle sizes less than 0.2 mm.When the particle sizes are greater than 0.2 mm,the contacts are effectively summarized as face-face,face-angle,face-edge,edge-edge,edge-angle,angle-angle,sphere-sphere,sphere-face,sphere-edge and sphere-angle contacts.The differences in porosity among the original sample,reconstructed sample and regularized sample are closely related to the water-swelling and water-disintegrable characteristics of granite residual soil.