针对设备故障和人为干扰等因素造成光伏数据缺失的问题,提出了一种基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法。首先,使用Wasserstein散度生成对抗网络(Wasserstein divergence for GANs,WGAN-div)学习光伏数据的时...针对设备故障和人为干扰等因素造成光伏数据缺失的问题,提出了一种基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法。首先,使用Wasserstein散度生成对抗网络(Wasserstein divergence for GANs,WGAN-div)学习光伏数据的时序性规律与耦合关系;其次,设计了重构约束,通过优化生成器的噪声输入,使得重构后的样本最大限度贴近真实样本;针对优化高维变量问题,采用纵横交叉算法催化粒子群算法的寻优过程,防止优化时出现早熟问题。实验结果表明,在光伏数据含有大量缺失值时,所提方法具有较高的重构准确率。该方法也适用于电力系统中类似数据的缺失值重构,具有良好的应用前景。展开更多
针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的...针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。展开更多
文摘针对设备故障和人为干扰等因素造成光伏数据缺失的问题,提出了一种基于生成对抗网络和纵横交叉粒子群算法的光伏数据缺失重构方法。首先,使用Wasserstein散度生成对抗网络(Wasserstein divergence for GANs,WGAN-div)学习光伏数据的时序性规律与耦合关系;其次,设计了重构约束,通过优化生成器的噪声输入,使得重构后的样本最大限度贴近真实样本;针对优化高维变量问题,采用纵横交叉算法催化粒子群算法的寻优过程,防止优化时出现早熟问题。实验结果表明,在光伏数据含有大量缺失值时,所提方法具有较高的重构准确率。该方法也适用于电力系统中类似数据的缺失值重构,具有良好的应用前景。
文摘针对化工过程数据中存在缺失数据的问题,在保持局部数据结构特征的基础上提出了基于局部加权重构的化工过程数据恢复算法。通过定位缺失的数据点并以符号Na N(Not a Number)标记,将缺失的数据集分为完备数据集和不完备数据集。不完备的数据集按照完整性的大小依次找到它们在完备数据集中相应的k个近邻,根据误差平方和最小的原则,求出k个近邻相应的权值,用k个近邻及相应的权值重构出缺失的数据点。将该算法应用在不同缺失率下的两种化工过程数据中并与望最大化主成分分析(EM-PCA)法和平均值(MA)两种传统的数据恢复算法相比较,该算法的恢复数据误差最小,并且计算速度相比EM-PCA算法平均提高了2倍。实验结果表明,局部加权重构的化工过程数据恢复算法可以有效地对数据进行恢复,提高了数据的利用率,适用于非线性化工过程缺失数据的恢复。