期刊文献+
共找到127篇文章
< 1 2 7 >
每页显示 20 50 100
基于改进YOLOv8n的轻量化马铃薯表面缺陷在线检测方法 被引量:1
1
作者 许英超 刘书玮 +4 位作者 王相友 吴海涛 黄杰 王恒仁 王毅 《农业工程学报》 北大核心 2025年第5期135-144,共10页
马铃薯表面缺陷是农产品分级的重要依据。为提升马铃薯表面缺陷检测精度并实现模型在移动端的快速识别,该研究提出了一种基于改进YOLOv8n的马铃薯表面缺陷检测方法DATW-YOLOv8。算法使用Dilation-wise Residual模块替换C2f中的Bottlenec... 马铃薯表面缺陷是农产品分级的重要依据。为提升马铃薯表面缺陷检测精度并实现模型在移动端的快速识别,该研究提出了一种基于改进YOLOv8n的马铃薯表面缺陷检测方法DATW-YOLOv8。算法使用Dilation-wise Residual模块替换C2f中的Bottleneck模块,并引入Dilated Reparam Block模块对C2f进行二次改进,加强细节特征提取,提高缺陷特征的提取精度;随后,引入轻量级自适应下采样(ADOWN)卷积模块,实现图像数据的有效降维,提升模型处理效率;此外,改造检测头为任务对齐动态检测头(task align dynamic detection head,TADDH),提高缺陷边界预测精度,精准聚焦缺陷关键区;最终,使用Wise-EIoU作为边界框回归损失函数,增强模型对边界模糊样本的关注度,提升缺陷边界回归精度及模型鲁棒性。试验结果表明,改进DATW-YOLOv8模型在准确率、召回率和平均精度方面分别达到95.8%、88.1%和94.3%,参数量和权重分别为1.5 M和3.6 MB。与原YOLOv8n模型相比,参数量和权重分别减少了50.0%和42.9%,同时准确率、召回率和平均精度分别提高了2.8、1.6和1.4个百分点。该方法能满足实际生产中针对缺陷马铃薯进行精准、实时检测的要求,为马铃薯表面缺陷在线检测及模型在移动端的部署提供了技术参考。 展开更多
关键词 图像识别 深度学习 无损检测 马铃薯 表面缺陷 轻量化 YOLOv8
在线阅读 下载PDF
基于特征表征与学习反馈的动态带钢缺陷样本筛选方法
2
作者 苑玮琦 刘文滔 李绍丽 《仪器仪表学报》 北大核心 2025年第4期240-250,共11页
带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受... 带钢表面缺陷检测是保证钢铁产品质量的关键环节,实现高效准确的缺陷检测对保障产品性能具有重要意义。近年来,深度学习方法在缺陷检测领域进展显著,但在实际应用中仍面临两个问题:一方面,由于工业生产追求高良品率,导致缺陷样本获取受限,且样本标注耗时费力;另一方面,采集的样本中可能存在冗余特征,影响模型训练效率和泛化性能。针对特征冗余问题,提出一种基于特征表征与学习反馈机制的动态样本筛选方法。首先构建包含几何形态、灰度分布及方向特征等多维特征量化模型,系统表征缺陷特征。随后,设计基于特征表征的样本筛选策略,结合特征聚类快速筛选少量具有多样性和代表性的训练样本。最后,设计基于置信度评估的动态优化策略,通过模型的学习反馈获取关键补充样本,提升特征覆盖范围,实现训练样本的自适应优化。NEU-DET数据集的实验结果表明,该方法在将训练样本数量减少52%的情况下,平均检测精度达到76.99%,与完整数据集基本持平。同时,每轮训练迭代时间减少62%,降低了计算开销,验证了方法在样本筛选与检测性能之间的有效平衡。此外,在多种主流目标检测模型上的验证结果表明,该方法在不同检测架构下均能有效提升效率并保持性能,展现出良好的适用性。 展开更多
关键词 带钢表面缺陷检测 样本筛选 特征表征 形态学特征 深度学习
在线阅读 下载PDF
基于小波去噪与同态滤波的带钢缺陷图像增强
3
作者 李恒 崔莹 +1 位作者 赵磊 刘辉 《沈阳工业大学学报》 北大核心 2025年第3期369-376,共8页
【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。... 【目的】钢铁工业作为我国经济发展的支柱产业之一,在整个制造业中具有无可取代的地位。热轧带钢具有包容覆盖能力强、便于加工、节省材料等优点,是生产其他钢产品的主要原材料,提高带钢产品的表面质量是提高钢铁产品质量的重要环节。由于受到生产、加工、拍摄等多种因素的影响,原始带钢表面缺陷图像亮度不均匀、缺陷区域与非缺陷区域对比度较低,导致缺陷信息不够清晰、不便于检测。针对上述问题提出了一种基于小波去噪与改进同态滤波相结合的带钢表面缺陷图像增强算法。【方法】算法采用二级小波变换将原始图像分解为低频分量和高频分量。低频分量包含原图的主要信息,对低频分量进行增强处理以提升图像的整体效果。分别采用改进的同态滤波算法以及限制对比度自适应直方图均衡化(contrast limited adaptive histogram equalization,CLAHE)算法对低频分量进行增强,在均衡图像亮度的同时提高了整体对比度,并将上述两种算法处理后的低频图像基于适当的权重进行图像融合,得到增强后的低频分量。而高频分量包含图像的细节信息以及噪声,对高频分量使用了改进的阈值函数提升去噪效果,并较好地保留了边缘细节。将处理后的低频分量和高频分量通过小波重构得到最终的增强图像。【结果】通过主观视觉评价和客观评价指标对算法处理结果进行多组对比分析,与其他算法结果相比,经本文算法增强后的各类带钢表面缺陷图像亮度均明显提升,且整体亮度保持均衡,同时提高了对比度,图像的纹理细节和缺陷信息也更加明显。采用通用指标均方误差(mean square error,MSE)、峰值信噪比(peak signal to noise ratio,PSNR)和图像信息熵(image entropy,IE)对算法进行评估,综合分析各参数可知,本文算法对提高对比度、降低噪声效果较为显著,同时保留了更多的细节信息,失真度较小。【结论】实验结果表明,本文算法有效改善了带钢表面缺陷图像亮度不均匀的问题,在提高了整体对比度的同时提升了去噪效果,使缺陷信息和边缘细节得到显著增强,并且适用于多种类型的带钢表面缺陷检测。 展开更多
关键词 小波变换 同态滤波 阈值去噪 图像增强 带钢 表面缺陷 对比度自适应直方图均衡化 小波重构
在线阅读 下载PDF
改进YOLOv8的钢材表面缺陷检测算法 被引量:1
4
作者 徐莲蓉 梁少华 《现代电子技术》 北大核心 2025年第4期173-180,共8页
为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone... 为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone中,使模型能够更好地关注目标缺陷的特征信息;接着,采用高效层聚合网络(RepGFPN)模块作为颈部网络,充分融合不同尺度的特征,提高特征融合能力;最后,引入轻量级上采样算子CARAFE,进一步提升模型的检测效果。实验结果显示,在公开的NEU-DET数据集上,改进后模型的平均精度均值(mAP)达到了81.1%,相较于原始YOLOv8模型,mAP提高了2.7%,精确率提升了3.9%。与此同时,在GC10-DET数据集上的实验也表明改进模型具有良好的鲁棒性,证明了所提算法能够有效地完成钢材表面缺陷的检测任务。 展开更多
关键词 钢材表面缺陷 缺陷检测 YOLOv8算法 坐标注意力机制 高效层聚合网络 识别能力
在线阅读 下载PDF
HSED-YOLO:一种轻量化的带钢表面缺陷检测模型 被引量:2
5
作者 戴林华 黎远松 +2 位作者 石睿 何忠良 李雷 《广西师范大学学报(自然科学版)》 北大核心 2025年第2期95-106,共12页
针对当前带钢表面缺陷检测算法计算复杂度高、检测精度较低、容易产生漏检和误检等问题,本文提出一种轻量化的带钢表面缺陷检测模型HSED-YOLO。首先,将原始YOLOv8n主干网络更换为改进后的HGNetV2,减少特征图计算冗余,从而降低模型的参... 针对当前带钢表面缺陷检测算法计算复杂度高、检测精度较低、容易产生漏检和误检等问题,本文提出一种轻量化的带钢表面缺陷检测模型HSED-YOLO。首先,将原始YOLOv8n主干网络更换为改进后的HGNetV2,减少特征图计算冗余,从而降低模型的参数量。然后,为了进一步降低模型的复杂度,在模型颈部网络结构中引入Slim-Neck结构化设计;同时,在特征融合阶段引入EMA(efficient multi-scale attention module)注意力机制,提高模型的特征提取能力;为了进一步提高模型的检测精度,使用DIoU损失函数设计。最后,在带钢缺陷数据集上进行大量实验,得到改进后模型的参数量和计算量分别为2.1×106和6.1×109,仅为基准模型的70%和75.3%,并且平均精度相比于基准模型提升2个百分点,表明改进模型是有效的。 展开更多
关键词 缺陷检测 带钢 YOLOv8 注意力机制 损失函数 图像识别
在线阅读 下载PDF
基于YOLOv11-MML的马铃薯表面缺陷实时检测方法
6
作者 朱然辉 王相友 +4 位作者 吴海涛 刘书玮 黄黄杰 李继昊 王恒仁 《农业工程学报》 北大核心 2025年第15期117-126,共10页
针对现有马铃薯表面缺陷检测方法精度不足、模型冗余高和实时部署性能受限等问题,该研究提出一种基于YOLOv11-MML的马铃薯表面缺陷实时检测方法。首先,采用多尺度边缘信息选择机制(multiscale edge information select,MEIS)替代C3k2结... 针对现有马铃薯表面缺陷检测方法精度不足、模型冗余高和实时部署性能受限等问题,该研究提出一种基于YOLOv11-MML的马铃薯表面缺陷实时检测方法。首先,采用多尺度边缘信息选择机制(multiscale edge information select,MEIS)替代C3k2结构中的卷积单元,结合双域选择注意力机制(dual-domain selection mechanism,DSM)增强边缘与细节特征提取能力,提高检测精度;其次,引入多尺度精准下采样结构(multi-scale precision-efficient downsampling,MPED),提升模型对不同尺度缺陷的感知能力;最后,设计轻量化细节增强卷积检测头(lightweight detail-enhanced convolutional head,LDECH),在保证检测精度的同时提升模型轻量化水平。改进后的YOLOv11-MML模型的准确率、召回率和平均精度均值分别达到96.5%、91.3%和96.7%,较原模型提升了5.8、5.8和4.2个百分点;参数量和权重分别为1.9 M和4.6 MB,较原模型减少了26.9%和13.2%。在实际部署中,YOLOv11-MML模型应用于双通道马铃薯缺陷检测分选机,推理速度达171.3帧/s,可满足马铃薯12个/s的实时检测需求,整体检测准确率达94.0%,验证了其在实际工况下的实用性与工程适应性,为马铃薯表面缺陷在线检测提供了一种高效精准的参考方案。 展开更多
关键词 图像识别 深度学习 马铃薯 表面缺陷 多尺度 轻量化 YOLOv11 实时检测
在线阅读 下载PDF
基于YOLOv8的输电线路绝缘子表面缺陷识别算法 被引量:2
7
作者 熊伟 路鑫 +1 位作者 邱维进 王平强 《电子测量技术》 北大核心 2025年第2期178-188,共11页
针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,... 针对当前绝缘子表面缺陷识别存在的图像背景复杂、缺陷小目标识别效果差的问题,提出一种基于YOLOv8的输电线路绝缘子表面缺陷识别算法。首先,在主干网络引入CAF模块,增强模型对复杂图像场景的解析,增强全局和局部特征的提取能力;其次,在模型的颈部网络增加GD机制,减少特征融合过程中信息的丢失,提升小目标检测能力;最后,采用ATFL分类损失函数,削弱复杂背景对小目标检测的干扰,引入PIOU边界框损失函数,提高识别精度,加快模型收敛速度。实验结果表明,该算法的mAP50达到94.1%,精确率达到92.5%,召回率达到91.3%,相较于基线模型分别提高了3.1%、0.7%、3.9%,且综合性能优于最近的YOLOv9s、YOLOv10s等代表性算法。 展开更多
关键词 目标检测 绝缘子表面缺陷识别 小目标 卷积和注意力融合 边界框损失函数 分类损失函数
在线阅读 下载PDF
一种基于改进YOLOv8的带状合金功能材料缺陷检测方法
8
作者 杨威 杨俊 +1 位作者 许聪源 夏亚金 《计量学报》 北大核心 2025年第3期329-339,共11页
针对带状合金功能材料缺陷检测中存在的漏检、误检和检测速度慢等问题,提出一种基于改进YOLOv8的带状合金功能材料缺陷检测算法。为充分融合模型骨干网络提取的多尺度特征,首先,设计多尺度特征编码器(MFE)模块,并在颈部构建多尺度特征... 针对带状合金功能材料缺陷检测中存在的漏检、误检和检测速度慢等问题,提出一种基于改进YOLOv8的带状合金功能材料缺陷检测算法。为充分融合模型骨干网络提取的多尺度特征,首先,设计多尺度特征编码器(MFE)模块,并在颈部构建多尺度特征聚集扩散(MFAD)结构,利用独特的扩散机制使具有丰富上下文信息的特征扩散到各个尺度;然后,在模型头部设计一种共享参数的任务动态对齐检测头(TDADH),通过卷积参数共享与任务对齐机制,降低模型复杂度的同时提高模型的检测精度;最后,设计感知注意力空间金字塔池化(PASPP)模块,利用注意力机制的显式动态选择机制增强模型特征表达能力。实验结果表明:该方法在合金功能材料数据集上实现了90.1%的均值平均精度P_(mAP50),参数量为2.543×10^(6),检测速度为232帧/s,优于主流的深度检测算法,并在GC10-DET和PASCAL VOC2012数据集上获得最优性能,具备较好的泛化性。 展开更多
关键词 机器视觉检测 表面缺陷检测 带状合金功能材料 多尺度融合 解耦检测头 注意力机制 YOLOv8
在线阅读 下载PDF
基于SDD-YOLO的轻量级带钢缺陷实时检测算法
9
作者 梁秀满 肖寒 《中国测试》 北大核心 2025年第3期154-161,共8页
针对复杂工业生产环境下,热轧带钢的表面缺陷检测准确率低,网络模型参数量过大,难以部署等问题,该文提出一种基于YOLOv4模型改进的轻量级带钢缺陷实时检测算法SDD-YOLO。所提算法在特征提取部分采用GhostNet网络,压缩模型参数量;在特征... 针对复杂工业生产环境下,热轧带钢的表面缺陷检测准确率低,网络模型参数量过大,难以部署等问题,该文提出一种基于YOLOv4模型改进的轻量级带钢缺陷实时检测算法SDD-YOLO。所提算法在特征提取部分采用GhostNet网络,压缩模型参数量;在特征融合部分,借鉴BiFPN结构改进PAN网络,采用GSConv卷积代替标准卷积,减少模型参数量和计算量,同时嵌入注意力模块CA(Coordinate Attention),增强模型特征融合能力;在预测部分采用SIOU-loss代替CIOU-loss,提高模型收敛效率,加快收敛速度;采用k-means聚类算法重新设计先验框,提高模型精度。实验结果表明,该文提出的模型相较于YOLOv4,模型参数量减少71.6%,浮点运算量降低74.6%,模型大小减小71.6%,检测精度提高3.49%,单张图片检测速度为25.9 ms。在保证准确率和检测速度的条件下,基本可以满足工业现场对缺陷的实时检测要求。 展开更多
关键词 带钢表面缺陷 目标检测 轻量级网络 YOLOv4
在线阅读 下载PDF
基于融合注意力和多尺度特征的热轧带钢表面缺陷检测方法
10
作者 包广清 周芷意 孟庆成 《北京工业大学学报》 北大核心 2025年第8期944-956,共13页
针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,... 针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,引入遗传算法(genetic algorithm, GA)以获得更具代表性的锚框尺寸,并提升模型的回归速度和小面积缺陷检测的精确度。其次,对于边界模糊且背景复杂的缺陷,提出一种目标检测边界框损失函数FocalSIoU,以减少模型中不必要特征的学习,加快检测速度,提升预测框的回归效果。最后,设计一种多尺度特征融合模块(multi-scale feature fusion module, MFFM),通过多尺度信息融合增强模型特征提取能力,提高小目标的检测精确度,并改善模型检测误检率。在模型Head结构中引入空到深(space to depth, SPD)卷积模块对模型进行改进,避免细粒度信息的丢失,降低目标漏检率。通过NEU-DET数据集进行验证,结果表明,SFSP-YOLOv7模型检测的平均精度均值(mean average precision, mAP)为78.3%,相比原YOLOv7模型提升了5.0个百分点,表明提出的检测方法具有有效性。 展开更多
关键词 带钢表面缺陷检测 深度学习 YOLOv7 损失函数 注意力机制 多尺度特征融合
在线阅读 下载PDF
基于YOLOV5s_Attention的表面缺陷检测的应用研究 被引量:8
11
作者 庞宁雅 杜安钰 《现代电子技术》 2023年第3期39-46,共8页
基于卷积神经网络的表面缺陷检测算法虽然取得了较高的检测精度,但在检测速度上不能较好满足实际工程应用的实时性需求。为了满足实际工程中对检测精度与检测速度的均衡要求,文中以YOLOV5s为基线提出一种基于通道空间注意力的表面缺陷... 基于卷积神经网络的表面缺陷检测算法虽然取得了较高的检测精度,但在检测速度上不能较好满足实际工程应用的实时性需求。为了满足实际工程中对检测精度与检测速度的均衡要求,文中以YOLOV5s为基线提出一种基于通道空间注意力的表面缺陷检测算法YOLOV5s_Attention。首先,将传统的数据增强与马赛克数据增强相结合来提升模型鲁棒性;其次,在Backbone中添加SE模块,将不同通道的特征权重进行重新分配,更有效地进行特征提取;最后,在Neck的跳链中添加CBAM模块,将提取特征依次进行通道与空间维度的融合,较好地保留了图像的通道特征与空间位置信息。在标准数据集上的大量对比实验证实了提出的YOLOV5s_Attention优于一些现有的经典模型。以NEU-DET数据集为例,相较于基线YOLOV5s,YOLOV5s_Attention的检测精度提升了8.3%,其中六类缺陷之一的细裂纹(Cr)的检测精度由32.8%提升到了76.8%,在保证检测精度的同时,单帧检测时间也达到91 f/s,从而能较好地满足缺陷检测工程中对检测精度与检测速度的均衡需求。 展开更多
关键词 钢带表面缺陷检测 YOLOV5s 注意力机制 鲁棒性 检测精度 检测速度
在线阅读 下载PDF
基于改进Res-UNet网络的织物瑕疵图像识别方法 被引量:3
12
作者 于光许 张富宇 《毛纺科技》 CAS 北大核心 2024年第7期100-106,共7页
复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提... 复杂花色织物的纹理和色彩常常是非规则的,导致织物表面瑕疵识别难度较高。针对上述问题,研究一种基于改进Res-UNet网络的织物表面瑕疵图像识别方法。采集织物图像并对其实施灰度化、去噪以及直方图均衡化处理,利用蝙蝠算法求取最佳提取网络层数,通过增加特征提取网络层数改进Res-UNet网络,利用改进后的Res-UNet网络识别织物表面瑕疵,并且采用迁移学习算法进一步优化识别模型的参数,实现织物表面瑕疵准确识别。结果表明:本文方法应用下,无论是素色样本,还是花色样本,其识别系数均达到0.9以上,相比基于标签嵌入方法的织物瑕疵识别方法和双路高分辨率转换网络的布匹瑕疵检测方法,本文方法对复杂花色样本的轮廓系数识别更高,适用性更好,识别能力更强。 展开更多
关键词 改进Res-UNet网络 织物表面瑕疵 图像采集 预处理 图像识别
在线阅读 下载PDF
基于改进YOLOv8的热轧带钢表面缺陷检测方法
13
作者 肖科 杨昕宇 +1 位作者 韩彦峰 宋斌 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第12期67-77,共11页
针对目前热轧带钢表面缺陷检测精度低和效率低的问题,提出了一种基于改进YOLOv8s的目标检测算法.首先,提出了一种基于特征图二次拼接并融入GAM的SPPD模块,提升了模型多尺度信息融合能力.其次,提出了一种融合可变形卷积的特征提取模块DCN... 针对目前热轧带钢表面缺陷检测精度低和效率低的问题,提出了一种基于改进YOLOv8s的目标检测算法.首先,提出了一种基于特征图二次拼接并融入GAM的SPPD模块,提升了模型多尺度信息融合能力.其次,提出了一种融合可变形卷积的特征提取模块DCNblock,以增大模型的感受野,提取完整的缺陷信息.最后,将特征融合网络中的C2f模块替换为BoT(bottleneck transformer)结构,将Transformer中的多头自注意力机制与卷积融合,提升模型的全局位置信息感知能力.实验结果表明,本文提出的算法在NEU-DET数据集上的平均精度均值(mAP)达到了80.5%,较原有的YOLOv8算法提升了5个百分点,同时检测速度达到了83帧/s,满足实时检测的需求. 展开更多
关键词 热轧带钢 表面缺陷 目标检测 深度学习
在线阅读 下载PDF
YOLOv8-VSC:一种轻量级的带钢表面缺陷检测算法 被引量:58
14
作者 王春梅 刘欢 《计算机科学与探索》 CSCD 北大核心 2024年第1期151-160,共10页
目前在带钢表面缺陷检测领域,通用的目标检测算法复杂度高、计算量庞大,而一些中小型企业负责检测的终端设备通常不具备较强的计算能力,计算资源有限,从而导致检测算法部署困难。为解决该问题,基于YOLOv8n目标检测框架,提出一种轻量级... 目前在带钢表面缺陷检测领域,通用的目标检测算法复杂度高、计算量庞大,而一些中小型企业负责检测的终端设备通常不具备较强的计算能力,计算资源有限,从而导致检测算法部署困难。为解决该问题,基于YOLOv8n目标检测框架,提出一种轻量级的带钢表面缺陷检测模型YOLOv8-VSC。该模型使用轻量级的VanillaNet网络作为骨干特征提取网络,通过减少不必要的分支结构降低模型的复杂度。同时,引入SPD模块在减少网络层数的同时加快模型的推理速度。为了进一步提升检测精度,在特征融合网络中,使用轻量级的上采样算子CARAFE,提高融合特征的质量和丰富度。最后,在NEU-DET数据集上进行大量实验,得到模型的参数量与计算量为1.96×106和6.0 GFLOPs,仅为基线的65.1%和74.1%,mAP达到80.8%,较基线提升1.8个百分点。此外,在铝材表面缺陷数据集和VOC2012数据集上的实验结果表明所提算法具有良好的鲁棒性。与先进的目标检测算法相比,所提算法在保证高检测精度的前提下需要的计算资源更少。 展开更多
关键词 缺陷检测 带钢表面缺陷 YOLOv8 轻量级网络 VanillaNet
在线阅读 下载PDF
基于小波去噪与改进Canny算法的带钢表面缺陷检测 被引量:6
15
作者 崔莹 赵磊 +1 位作者 李恒 刘辉 《现代电子技术》 北大核心 2024年第4期148-152,共5页
针对带钢表面图像亮度不均匀、对比度低以及缺陷种类多、形式复杂的问题,提出一种基于小波去噪与改进Canny算法的带钢表面缺陷检测算法。首先通过小波变换将原始图像分解,对低频分量采用改进的同态滤波提高亮度和对比度,对高频分量采用... 针对带钢表面图像亮度不均匀、对比度低以及缺陷种类多、形式复杂的问题,提出一种基于小波去噪与改进Canny算法的带钢表面缺陷检测算法。首先通过小波变换将原始图像分解,对低频分量采用改进的同态滤波提高亮度和对比度,对高频分量采用改进的阈值函数进行去噪,并通过小波重构得到增强图像。其次对传统Canny算法进行改进,通过改进的自适应加权中值滤波进行平滑,并增加梯度方向模板;然后采用迭代式最优阈值选择法与最大类间方差法来求取高低阈值,提高算法的自适应性。最后采用形态学处理对缺陷边缘填充,并去除干扰边缘及毛刺,得到带钢表面缺陷区域。实验结果表明,所提算法对带钢表面缺陷的检测效果较好、精度较高,适用于多种类型的带钢表面缺陷检测。 展开更多
关键词 小波去噪 CANNY算法 带钢表面缺陷检测 同态滤波 自适应加权中值滤波 形态学处理
在线阅读 下载PDF
面向工业场景带钢表面缺陷检测的LF-YOLO 被引量:3
16
作者 马肖瑶 黎睿 +1 位作者 李自力 翟文正 《计算机工程与应用》 CSCD 北大核心 2024年第18期78-87,共10页
针对工业场景下带钢表面缺陷尺寸大小不一、采集图像模糊导致传统缺陷检测算法在实际应用中精度低的问题,提出一种面向工业场景带钢表面缺陷检测的LF-YOLO算法。模型通过设计一种局部填充上采样模块对输入像素进行上采样,提高模型对模... 针对工业场景下带钢表面缺陷尺寸大小不一、采集图像模糊导致传统缺陷检测算法在实际应用中精度低的问题,提出一种面向工业场景带钢表面缺陷检测的LF-YOLO算法。模型通过设计一种局部填充上采样模块对输入像素进行上采样,提高模型对模糊图片的识别能力,降低模型对小目标缺陷的漏检率。通过引入专注视觉任务的FReLU激活函数,提高模型定位缺陷的准确率。提出一种轻量级的漏斗注意力机制并与特征提取模块C2f进行结合,增强模型对不同尺寸缺陷的特征提取能力。在开源数据集NEU-DET与GC10-DET上的实验结果表明,改进后的模型平均检测精度比原始YOLOv8算法精度分别高7.0和15.4个百分点,且相较于其他目标缺陷检测模型在平均检测精度方面具有优势,并进一步通过消融实验验证了每个模块的有效性。 展开更多
关键词 带钢表面缺陷检测 深度学习 上采样 注意力机制 激活函数
在线阅读 下载PDF
基于元学习的带钢表面缺陷小样本语义分割 被引量:1
17
作者 冯虎 宋克臣 +1 位作者 崔文琦 颜云辉 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第3期354-360,共7页
由于缺少带钢表面缺陷样本,使得深度神经网络在带钢表面缺陷检测的应用受到了限制,为解决这一实际问题,提出了一种基于元学习思想的小样本语义分割深度学习方法.该方法引入了多尺度解码器和注意力机制.多尺度解码器能够聚合不同尺度的... 由于缺少带钢表面缺陷样本,使得深度神经网络在带钢表面缺陷检测的应用受到了限制,为解决这一实际问题,提出了一种基于元学习思想的小样本语义分割深度学习方法.该方法引入了多尺度解码器和注意力机制.多尺度解码器能够聚合不同尺度的缺陷特征信息,提高网络的分割精度.注意力机制能够有效增强缺陷信息表达,并且抑制背景信息的干扰.此外,构建了一个带钢表面缺陷语义分割数据集,该数据集包含9类带钢表面缺陷.在该数据集上进行了相关实验,结果表明本文方法在平均交并比和前景-背景交并比指标上优于PFENet,SCLNet和HSNet等方法. 展开更多
关键词 带钢表面缺陷检测 元学习 小样本语义分割 注意力机制 多尺度解码器
在线阅读 下载PDF
基于改进YOLOv5的带钢表面缺陷检测 被引量:2
18
作者 杨威 杨俊 许聪源 《计量学报》 CSCD 北大核心 2024年第11期1671-1680,共10页
针对带钢表面缺陷检测方法存在检测精度低和检测速度慢的问题,提出一种基于改进YOLOv5的带钢表面缺陷检测方法。首先,采用内容感知特征重组CARAFE作为多尺度特征融合的上采样算子,构建具有通道缩放的自适应空间特征融合CS-ASFF结构,以... 针对带钢表面缺陷检测方法存在检测精度低和检测速度慢的问题,提出一种基于改进YOLOv5的带钢表面缺陷检测方法。首先,采用内容感知特征重组CARAFE作为多尺度特征融合的上采样算子,构建具有通道缩放的自适应空间特征融合CS-ASFF结构,以增强多尺度特征融合并控制模型复杂度。其次,在模型的卷积层和跨层级结构引入GSConv和VoVGSCSP模块,以减小计算量并提高检测精度。最后,采用Focal-GIOU Loss作为损失函数来解决带钢缺陷图像中难易样本不平衡的问题,并提升模型对复杂数据的适应能力。实验结果表明,在NEU-DET数据集上该方法达到了80.6%的均值平均精度(P_(mAP)),计算量为14.8 GFLOPs。与YOLOv5相比,P_(mAP)提高了4.3%且计算量减少了6.33%。与当前主流目标检测网络相比,在更低的计算量下该方法具有最高的检测精度,能够满足真实工业场景下的带钢表面缺陷实时检测。 展开更多
关键词 机器视觉 带钢表面缺陷检测 YOLOv5 多尺度融合 损失函数
在线阅读 下载PDF
基于GS-YOLO模型的带钢表面缺陷检测 被引量:1
19
作者 忻迪晔 严怀成 《计算机应用》 CSCD 北大核心 2024年第S2期302-308,共7页
为解决现有目标检测方法对带钢表面缺陷检测精度不高、效率低下的问题,提出一种GS-YOLO(Gather-anddistribute-Squeeze-YOLO)模型检测表面缺陷。首先,在骨干网络中,引入SE(Squeeze-and-Excitation)注意力机制,以显著增强模型对缺陷特征... 为解决现有目标检测方法对带钢表面缺陷检测精度不高、效率低下的问题,提出一种GS-YOLO(Gather-anddistribute-Squeeze-YOLO)模型检测表面缺陷。首先,在骨干网络中,引入SE(Squeeze-and-Excitation)注意力机制,以显著增强模型对缺陷特征的识别与定位能力;然后,将原始C3模块中的传统卷积替换为Ghost卷积,从而有效降低模型的参数量与计算量;最后,在模型颈部引入GD(Gather-and-Distribute)特征融合模块取代传统路径聚合网络(PAN)和特征金字塔网络(FPN)架构,从而确保特征融合的连续性,并提高不同规模目标的识别准确度。实验结果表明,与原始的YOLOv5s相比,所提模型的精确率、召回率和mAP@0.5分别提升了1.32、5.18和2.56个百分点,而计算量减少了0.4 GFLOPs,充分表明所提方法在兼顾检测精度提高的同时,降低了模型的计算量。 展开更多
关键词 YOLOv5 带钢表面缺陷 注意力机制 特征融合 轻量化结构 目标检测
在线阅读 下载PDF
基于LIR和GFNet的带钢表面缺陷识别
20
作者 刘双辉 易灿灿 +1 位作者 肖涵 黄涛 《组合机床与自动化加工技术》 北大核心 2024年第1期150-155,共6页
针对深度学习(deep learning,DL)模型处理带钢表面缺陷图像存在计算成本大、实时性差的问题,提出了一种基于可学习的图像调整器(learnable image resizer,LIR)和扫视-聚焦网络(glance and focus network,GFNet)的带钢表面缺陷分类方法... 针对深度学习(deep learning,DL)模型处理带钢表面缺陷图像存在计算成本大、实时性差的问题,提出了一种基于可学习的图像调整器(learnable image resizer,LIR)和扫视-聚焦网络(glance and focus network,GFNet)的带钢表面缺陷分类方法。首先,针对DL模型在处理带钢表面缺陷图像时存在空间冗余的问题,提出GFNet驱动的带钢表面缺陷识别模型,其可以根据不同样本自适应分配计算资源,在模型推理阶段显著减少计算量;其次,提出LIR和GFNet联合训练的方法,调整图像大小的同时实现针对识别模型的特征增强;最后,收集整理了某钢铁企业冷轧薄板厂带钢表面缺陷数据集,利用所提方法进行分析。将残差网络(residual networks,ResNet)的ResNet-50模型作为主干网络,与原始ResNet-50比较,所提方法在不牺牲准确率的情况下,将单张图像的推断时间减少约3.58倍,计算量降低约6.11倍,从而验证了提出方法的有效性。 展开更多
关键词 带钢表面缺陷 图像分类 可学习的图像调整器 动态神经网络 扫视-聚焦网络
在线阅读 下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部