期刊文献+
共找到283篇文章
< 1 2 15 >
每页显示 20 50 100
Self-reduction multi-head attention module for defect recognition of power equipment in substation
1
作者 Yifeng Han Donglian Qi Yunfeng Yan 《Global Energy Interconnection》 2025年第1期82-91,共10页
Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the b... Safety maintenance of power equipment is of great importance in power grids,in which image-processing-based defect recognition is supposed to classify abnormal conditions during daily inspection.However,owing to the blurred features of defect images,the current defect recognition algorithm has poor fine-grained recognition ability.Visual attention can achieve fine-grained recognition with its abil-ity to model long-range dependencies while introducing extra computational complexity,especially for multi-head attention in vision transformer structures.Under these circumstances,this paper proposes a self-reduction multi-head attention module that can reduce computational complexity and be easily combined with a Convolutional Neural Network(CNN).In this manner,local and global fea-tures can be calculated simultaneously in our proposed structure,aiming to improve the defect recognition performance.Specifically,the proposed self-reduction multi-head attention can reduce redundant parameters,thereby solving the problem of limited computational resources.Experimental results were obtained based on the defect dataset collected from the substation.The results demonstrated the efficiency and superiority of the proposed method over other advanced algorithms. 展开更多
关键词 Multi-Head attention Defect recognition Power equipment Computational complexity
在线阅读 下载PDF
Correction:A Broad Range Triboelectric Stiffness Sensor for Variable Inclusions Recognition
2
作者 Ziyi Zhao Zhentan Quan +8 位作者 Huaze Tang Qinghao Xu Hongfa Zhao Zihan Wang Ziwu Song Shoujie Li Ishara Dharmasena Changsheng Wu Wenbo Ding 《Nano-Micro Letters》 2025年第5期206-206,共1页
Correction to:Nano-Micro Lett.(2023)15:233 https://doi.org/10.1007/s40820-023-01201-7 Following publication of the original article[1],the authors reported that the first two lines of the introduction were accidentall... Correction to:Nano-Micro Lett.(2023)15:233 https://doi.org/10.1007/s40820-023-01201-7 Following publication of the original article[1],the authors reported that the first two lines of the introduction were accidentally placed in the right-hand column of the page in the PDF,which affects the readability. 展开更多
关键词 recognition STIFFNESS placed
在线阅读 下载PDF
Ti_(3)C_(2)T_(x) Composite Aerogels Enable Pressure Sensors for Dialect Speech Recognition Assisted by Deep Learning
3
作者 Yanan Xiao He Li +8 位作者 Tianyi Gu Xiaoteng Jia Shixiang Sun Yong Liu Bin Wang He Tian Peng Sun Fangmeng Liu Geyu Lu 《Nano-Micro Letters》 2025年第5期1-15,共15页
Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages... Wearable pressure sensors capable of adhering comfortably to the skin hold great promise in sound detection.However,current intelligent speech assistants based on pressure sensors can only recognize standard languages,which hampers effective communication for non-standard language people.Here,we prepare an ultralight Ti_(3)C_(2)T_(x)MXene/chitosan/polyvinylidene difluoride composite aerogel with a detection range of 6.25 Pa-1200 k Pa,rapid response/recovery time,and low hysteresis(13.69%).The wearable aerogel pressure sensor can detect speech information through the throat muscle vibrations without any interference,allowing for accurate recognition of six dialects(96.2%accuracy)and seven different words(96.6%accuracy)with the assistance of convolutional neural networks.This work represents a significant step forward in silent speech recognition for human–machine interaction and physiological signal monitoring. 展开更多
关键词 Pressure sensor Wearable sensor Ti_(3)C_(2)T_(x) composite aerogel Dialect speech recognition
在线阅读 下载PDF
Intelligent Recognition Using Ultralight Multifunctional Nano‑Layered Carbon Aerogel Sensors with Human‑Like Tactile Perception 被引量:4
4
作者 Huiqi Zhao Yizheng Zhang +8 位作者 Lei Han Weiqi Qian Jiabin Wang Heting Wu Jingchen Li Yuan Dai Zhengyou Zhang Chris RBowen Ya Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期172-186,共15页
Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this uniq... Humans can perceive our complex world through multi-sensory fusion.Under limited visual conditions,people can sense a variety of tactile signals to identify objects accurately and rapidly.However,replicating this unique capability in robots remains a significant challenge.Here,we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure,temperature,material recognition and 3D location capabilities,which is combined with multimodal supervised learning algorithms for object recognition.The sensor exhibits human-like pressure(0.04–100 kPa)and temperature(21.5–66.2℃)detection,millisecond response times(11 ms),a pressure sensitivity of 92.22 kPa^(−1)and triboelectric durability of over 6000 cycles.The devised algorithm has universality and can accommodate a range of application scenarios.The tactile system can identify common foods in a kitchen scene with 94.63%accuracy and explore the topographic and geomorphic features of a Mars scene with 100%accuracy.This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing,recognition and intelligence. 展开更多
关键词 Multifunctional sensor Tactile perception Multimodal machine learning algorithms Universal tactile system Intelligent object recognition
在线阅读 下载PDF
Overcoming the Limits of Cross-Sensitivity:Pattern Recognition Methods for Chemiresistive Gas Sensor Array 被引量:1
5
作者 Haixia Mei Jingyi Peng +4 位作者 Tao Wang Tingting Zhou Hongran Zhao Tong Zhang Zhi Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期285-341,共57页
As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and... As information acquisition terminals for artificial olfaction,chemiresistive gas sensors are often troubled by their cross-sensitivity,and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area.Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors.It is crucial to choose an appropriate pattern recognition method for enhancing data analysis,reducing errors and improving system reliability,obtaining better classification or gas concentration prediction results.In this review,we analyze the sensing mechanism of crosssensitivity for chemiresistive gas sensors.We further examine the types,working principles,characteristics,and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays.Additionally,we report,summarize,and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification.At the same time,this work showcases the recent advancements in utilizing these methods for gas identification,particularly within three crucial domains:ensuring food safety,monitoring the environment,and aiding in medical diagnosis.In conclusion,this study anticipates future research prospects by considering the existing landscape and challenges.It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications. 展开更多
关键词 Pattern recognition Sensor array Chemiresistive gas sensor CROSS-SENSITIVITY Artificial olfactory
在线阅读 下载PDF
HDCGD-CBAM:Satellite Interference Recognition Algorithm Based on Improved CLDNN and CBAM 被引量:1
6
作者 Duan Ruifeng Chen Ziyu +4 位作者 Meng Wei Wang Xu Yang Guoting Cheng Peng Li Yonghui 《China Communications》 SCIE CSCD 2024年第12期257-274,共18页
Satellite communication systems are facing serious electromagnetic interference,and interference signal recognition is a crucial foundation for targeted anti-interference.In this paper,we propose a novel interference ... Satellite communication systems are facing serious electromagnetic interference,and interference signal recognition is a crucial foundation for targeted anti-interference.In this paper,we propose a novel interference recognition algorithm called HDCGD-CBAM,which adopts the time-frequency images(TFIs)of signals to effectively extract the temporal and spectral characteristics.In the proposed method,we improve the Convolutional Long Short-Term Memory Deep Neural Network(CLDNN)in two ways.First,the simpler Gate Recurrent Unit(GRU)is used instead of the Long Short-Term Memory(LSTM),reducing model parameters while maintaining the recognition accuracy.Second,we replace convolutional layers with hybrid dilated convolution(HDC)to expand the receptive field of feature maps,which captures the correlation of time-frequency data on a larger spatial scale.Additionally,Convolutional Block Attention Module(CBAM)is introduced before and after the HDC layers to strengthen the extraction of critical features and improve the recognition performance.The experiment results show that the HDCGD-CBAM model significantly outper-forms existing methods in terms of recognition accuracy and complexity.When Jamming-to-Signal Ratio(JSR)varies from-30dB to 10dB,it achieves an average accuracy of 78.7%and outperforms the CLDNN by 7.29%while reducing the Floating Point Operations(FLOPs)by 79.8%to 114.75M.Moreover,the proposed model has fewer parameters with 301k compared to several state-of-the-art methods. 展开更多
关键词 attention mechanism CLDNN HDC interference recognition satellite communication
在线阅读 下载PDF
Unknown Application Layer Protocol Recognition Method Based on Deep Clustering 被引量:1
7
作者 Wu Jisheng Hong Zheng +1 位作者 Ma Tiantian Si Jianpeng 《China Communications》 SCIE CSCD 2024年第12期275-296,共22页
In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extract... In recent years,many unknown protocols are constantly emerging,and they bring severe challenges to network security and network management.Existing unknown protocol recognition methods suffer from weak feature extraction ability,and they cannot mine the discriminating features of the protocol data thoroughly.To address the issue,we propose an unknown application layer protocol recognition method based on deep clustering.Deep clustering which consists of the deep neural network and the clustering algorithm can automatically extract the features of the input and cluster the data based on the extracted features.Compared with the traditional clustering methods,deep clustering boasts of higher clustering accuracy.The proposed method utilizes network-in-network(NIN),channel attention,spatial attention and Bidirectional Long Short-term memory(BLSTM)to construct an autoencoder to extract the spatial-temporal features of the protocol data,and utilizes the unsupervised clustering algorithm to recognize the unknown protocols based on the features.The method firstly extracts the application layer protocol data from the network traffic and transforms the data into one-dimensional matrix.Secondly,the autoencoder is pretrained,and the protocol data is compressed into low dimensional latent space by the autoencoder and the initial clustering is performed with K-Means.Finally,the clustering loss is calculated and the classification model is optimized according to the clustering loss.The classification results can be obtained when the classification model is optimal.Compared with the existing unknown protocol recognition methods,the proposed method utilizes deep clustering to cluster the unknown protocols,and it can mine the key features of the protocol data and recognize the unknown protocols accurately.Experimental results show that the proposed method can effectively recognize the unknown protocols,and its performance is better than other methods. 展开更多
关键词 attention mechanism clustering loss deep clustering network traffic unknown protocol recognition
在线阅读 下载PDF
Automatic modulation recognition of radio fuzes using a DR2D-based adaptive denoising method and textural feature extraction 被引量:1
8
作者 Yangtian Liu Xiaopeng Yan +2 位作者 Qiang Liu Tai An Jian Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期328-338,共11页
The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-n... The identification of intercepted radio fuze modulation types is a prerequisite for decision-making in interference systems.However,the electromagnetic environment of modern battlefields is complex,and the signal-to-noise ratio(SNR)of such environments is usually low,which makes it difficult to implement accurate recognition of radio fuzes.To solve the above problem,a radio fuze automatic modulation recognition(AMR)method for low-SNR environments is proposed.First,an adaptive denoising algorithm based on data rearrangement and the two-dimensional(2D)fast Fourier transform(FFT)(DR2D)is used to reduce the noise of the intercepted radio fuze intermediate frequency(IF)signal.Then,the textural features of the denoised IF signal rearranged data matrix are extracted from the statistical indicator vectors of gray-level cooccurrence matrices(GLCMs),and support vector machines(SVMs)are used for classification.The DR2D-based adaptive denoising algorithm achieves an average correlation coefficient of more than 0.76 for ten fuze types under SNRs of-10 d B and above,which is higher than that of other typical algorithms.The trained SVM classification model achieves an average recognition accuracy of more than 96%on seven modulation types and recognition accuracies of more than 94%on each modulation type under SNRs of-12 d B and above,which represents a good AMR performance of radio fuzes under low SNRs. 展开更多
关键词 Automatic modulation recognition Adaptive denoising Data rearrangement and the 2D FFT(DR2D) Radio fuze
在线阅读 下载PDF
Working condition recognition of sucker rod pumping system based on 4-segment time-frequency signature matrix and deep learning
9
作者 Yun-Peng He Hai-Bo Cheng +4 位作者 Peng Zeng Chuan-Zhi Zang Qing-Wei Dong Guang-Xi Wan Xiao-Ting Dong 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期641-653,共13页
High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an eff... High-precision and real-time diagnosis of sucker rod pumping system(SRPS)is important for quickly mastering oil well operations.Deep learning-based method for classifying the dynamometer card(DC)of oil wells is an efficient diagnosis method.However,the input of the DC as a two-dimensional image into the deep learning framework suffers from low feature utilization and high computational effort.Additionally,different SRPSs in an oil field have various system parameters,and the same SRPS generates different DCs at different moments.Thus,there is heterogeneity in field data,which can dramatically impair the diagnostic accuracy.To solve the above problems,a working condition recognition method based on 4-segment time-frequency signature matrix(4S-TFSM)and deep learning is presented in this paper.First,the 4-segment time-frequency signature(4S-TFS)method that can reduce the computing power requirements is proposed for feature extraction of DC data.Subsequently,the 4S-TFSM is constructed by relative normalization and matrix calculation to synthesize the features of multiple data and solve the problem of data heterogeneity.Finally,a convolutional neural network(CNN),one of the deep learning frameworks,is used to determine the functioning conditions based on the 4S-TFSM.Experiments on field data verify that the proposed diagnostic method based on 4S-TFSM and CNN(4S-TFSM-CNN)can significantly improve the accuracy of working condition recognition with lower computational cost.To the best of our knowledge,this is the first work to discuss the effect of data heterogeneity on the working condition recognition performance of SRPS. 展开更多
关键词 Sucker-rod pumping system Dynamometer card Working condition recognition Deep learning Time-frequency signature Time-frequency signature matrix
在线阅读 下载PDF
A Support Data-Based Core-Set Selection Method for Signal Recognition
10
作者 Yang Ying Zhu Lidong Cao Changjie 《China Communications》 SCIE CSCD 2024年第4期151-162,共12页
In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classif... In recent years,deep learning-based signal recognition technology has gained attention and emerged as an important approach for safeguarding the electromagnetic environment.However,training deep learning-based classifiers on large signal datasets with redundant samples requires significant memory and high costs.This paper proposes a support databased core-set selection method(SD)for signal recognition,aiming to screen a representative subset that approximates the large signal dataset.Specifically,this subset can be identified by employing the labeled information during the early stages of model training,as some training samples are labeled as supporting data frequently.This support data is crucial for model training and can be found using a border sample selector.Simulation results demonstrate that the SD method minimizes the impact on model recognition performance while reducing the dataset size,and outperforms five other state-of-the-art core-set selection methods when the fraction of training sample kept is less than or equal to 0.3 on the RML2016.04C dataset or 0.5 on the RML22 dataset.The SD method is particularly helpful for signal recognition tasks with limited memory and computing resources. 展开更多
关键词 core-set selection deep learning model training signal recognition support data
在线阅读 下载PDF
Blind Recognition of Non-Binary LDPC Codes Based on Ant Colony Optimization
11
作者 Guan Mengsheng Gao Wanting +2 位作者 Chen Qi Zhu Min Bai Baoming 《China Communications》 SCIE CSCD 2024年第10期59-69,共11页
This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Sp... This paper introduces a novel blind recognition of non-binary low-density parity-check(LDPC)codes without a candidate set,using ant colony optimization(ACO)algorithm over additive white Gaussian noise(AWGN)channels.Specifically,the scheme that effectively combines the ACO algorithm and the non-binary elements over finite fields is proposed.Furthermore,an improved,simplified elitist ACO algorithm based on soft decision reliability is introduced to recognize the parity-check matrix over noisy channels.Simulation results show that the recognition rate continuously increases with an increased signalto-noise ratio(SNR)over the AWGN channel. 展开更多
关键词 ACO blind recognition non-binary LDPC codes open-set
在线阅读 下载PDF
Self-Attention Mechanism-Based Activity and Motion Recognition Using Wi-Fi Signals
12
作者 Kabo Poloko Nkabiti Chen Yueyun Tang Chao 《China Communications》 SCIE CSCD 2024年第12期92-107,共16页
Activity and motion recognition using Wi-Fi signals,mainly channel state information(CSI),has captured the interest of many researchers in recent years.Many research studies have achieved splendid results with the hel... Activity and motion recognition using Wi-Fi signals,mainly channel state information(CSI),has captured the interest of many researchers in recent years.Many research studies have achieved splendid results with the help of machine learning models from different applications such as healthcare services,sign language translation,security,context awareness,and the internet of things.Nevertheless,most of these adopted studies have some shortcomings in the machine learning algorithms as they rely on recurrence and convolutions and,thus,precluding smooth sequential computation.Therefore,in this paper,we propose a deep-learning approach based solely on attention,i.e.,the sole Self-Attention Mechanism model(Sole-SAM),for activity and motion recognition using Wi-Fi signals.The Sole-SAM was deployed to learn the features representing different activities and motions from the raw CSI data.Experiments were carried out to evaluate the performance of the proposed Sole-SAM architecture.The experimental results indicated that our proposed system took significantly less time to train than models that rely on recurrence and convolutions like Long Short-Term Memory(LSTM)and Recurrent Neural Network(RNN).Sole-SAM archived a 0.94%accuracy level,which is 0.04%better than RNN and 0.02%better than LSTM. 展开更多
关键词 CSI human activity and motion recognition Sole-SAM WI-FI
在线阅读 下载PDF
Automatic modulation recognition of radiation source signals based on two-dimensional data matrix and improved residual neural network
13
作者 Guanghua Yi Xinhong Hao +3 位作者 Xiaopeng Yan Jian Dai Yangtian Liu Yanwen Han 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期364-373,共10页
Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the ... Automatic modulation recognition(AMR)of radiation source signals is a research focus in the field of cognitive radio.However,the AMR of radiation source signals at low SNRs still faces a great challenge.Therefore,the AMR method of radiation source signals based on two-dimensional data matrix and improved residual neural network is proposed in this paper.First,the time series of the radiation source signals are reconstructed into two-dimensional data matrix,which greatly simplifies the signal preprocessing process.Second,the depthwise convolution and large-size convolutional kernels based residual neural network(DLRNet)is proposed to improve the feature extraction capability of the AMR model.Finally,the model performs feature extraction and classification on the two-dimensional data matrix to obtain the recognition vector that represents the signal modulation type.Theoretical analysis and simulation results show that the AMR method based on two-dimensional data matrix and improved residual network can significantly improve the accuracy of the AMR method.The recognition accuracy of the proposed method maintains a high level greater than 90% even at -14 dB SNR. 展开更多
关键词 Automatic modulation recognition Radiation source signals Two-dimensional data matrix Residual neural network Depthwise convolution
在线阅读 下载PDF
Modeling load distribution for rural photovoltaic grid areas using image recognition
14
作者 Ning Zhou Bowen Shang +1 位作者 Jinshuai Zhang Mingming Xu 《Global Energy Interconnection》 EI CSCD 2024年第3期270-283,共14页
Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru... Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability. 展开更多
关键词 Deep learning Remote sensing image recognition Photovoltaic development Load distribution modeling Power flow calculation
在线阅读 下载PDF
TransTM:A device-free method based on time-streaming multiscale transformer for human activity recognition
15
作者 Yi Liu Weiqing Huang +4 位作者 Shang Jiang Bobai Zhao Shuai Wang Siye Wang Yanfang Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期619-628,共10页
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still... RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published. 展开更多
关键词 Human activity recognition RFID TRANSFORMER
在线阅读 下载PDF
Radar Signal Intra-Pulse Modulation Recognition Based on Deep Residual Network
16
作者 Fuyuan Xu Guangqing Shao +3 位作者 Jiazhan Lu Zhiyin Wang Zhipeng Wu Shuhang Xia 《Journal of Beijing Institute of Technology》 EI CAS 2024年第2期155-162,共8页
In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intr... In view of low recognition rate of complex radar intra-pulse modulation signal type by traditional methods under low signal-to-noise ratio(SNR),the paper proposes an automatic recog-nition method of complex radar intra-pulse modulation signal type based on deep residual network.The basic principle of the recognition method is to obtain the transformation relationship between the time and frequency of complex radar intra-pulse modulation signal through short-time Fourier transform(STFT),and then design an appropriate deep residual network to extract the features of the time-frequency map and complete a variety of complex intra-pulse modulation signal type recognition.In addition,in order to improve the generalization ability of the proposed method,label smoothing and L2 regularization are introduced.The simulation results show that the proposed method has a recognition accuracy of more than 95%for complex radar intra-pulse modulation sig-nal types under low SNR(2 dB). 展开更多
关键词 intra-pulse modulation low signal-to-noise deep residual network automatic recognition
在线阅读 下载PDF
Optimization and Performance Enhancement of Gesture Recognition Algorithm Based on FMCW Millimeter-Wave Radar
17
作者 Zhe He Jinlong Zhou +1 位作者 Decheng Bao Renjing Gao 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期412-421,共10页
Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detectio... Gesture recognition plays an increasingly important role as the requirements of intelligent systems for human-computer interaction methods increase.To improve the accuracy of the millimeter-wave radar gesture detection algorithm with limited computational resources,this study improves the detection performance in terms of optimized features and interference filtering.The accuracy of the algorithm is improved by refining the combination of gesture features using a self-constructed dataset,and biometric filtering is introduced to reduce the interference of inanimate object motion.Finally,experiments demonstrate the effectiveness of the proposed algorithm in both mitigating interference from inanimate objects and accurately recognizing gestures.Results show a notable 93.29%average reduction in false detections achieved through the integration of biometric filtering into the algorithm’s interpretation of target movements.Additionally,the algorithm adeptly identifies the six gestures with an average accuracy of 96.84%on embedded systems. 展开更多
关键词 gesture recognition biometric filtering frequency-modulated continuous wave(FMCW)millimeter-wave radar feature optimization human-computer interaction
在线阅读 下载PDF
Chinese named entity recognition with multi-network fusion of multi-scale lexical information
18
作者 Yan Guo Hong-Chen Liu +3 位作者 Fu-Jiang Liu Wei-Hua Lin Quan-Sen Shao Jun-Shun Su 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第4期53-80,共28页
Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is ... Named entity recognition(NER)is an important part in knowledge extraction and one of the main tasks in constructing knowledge graphs.In today’s Chinese named entity recognition(CNER)task,the BERT-BiLSTM-CRF model is widely used and often yields notable results.However,recognizing each entity with high accuracy remains challenging.Many entities do not appear as single words but as part of complex phrases,making it difficult to achieve accurate recognition using word embedding information alone because the intricate lexical structure often impacts the performance.To address this issue,we propose an improved Bidirectional Encoder Representations from Transformers(BERT)character word conditional random field(CRF)(BCWC)model.It incorporates a pre-trained word embedding model using the skip-gram with negative sampling(SGNS)method,alongside traditional BERT embeddings.By comparing datasets with different word segmentation tools,we obtain enhanced word embedding features for segmented data.These features are then processed using the multi-scale convolution and iterated dilated convolutional neural networks(IDCNNs)with varying expansion rates to capture features at multiple scales and extract diverse contextual information.Additionally,a multi-attention mechanism is employed to fuse word and character embeddings.Finally,CRFs are applied to learn sequence constraints and optimize entity label annotations.A series of experiments are conducted on three public datasets,demonstrating that the proposed method outperforms the recent advanced baselines.BCWC is capable to address the challenge of recognizing complex entities by combining character-level and word-level embedding information,thereby improving the accuracy of CNER.Such a model is potential to the applications of more precise knowledge extraction such as knowledge graph construction and information retrieval,particularly in domain-specific natural language processing tasks that require high entity recognition precision. 展开更多
关键词 Bi-directional long short-term memory(BiLSTM) Chinese named entity recognition(CNER) Iterated dilated convolutional neural network(IDCNN) Multi-network integration Multi-scale lexical features
在线阅读 下载PDF
Adaptive decentralized AI scheme for signal recognition of distributed sensor systems
19
作者 Shixiong Zhang Hao Li +6 位作者 Cunzheng Fan Zhichao Zeng Chao Xiong Jie Wu Zhijun Yan Deming Liu Qizhen Sun 《Opto-Electronic Advances》 CSCD 2024年第12期37-49,共13页
Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors i... Artificial intelligence(AI)plays a critical role in signal recognition of distributed sensor systems(DSS),boosting its applications in multiple monitoring fields.Due to the domain differences between massive sensors in signal acquisition conditions,such as manufacturing process,deployment,and environments,current AI schemes for signal recognition of DSS frequently encounter poor generalization performance.In this paper,an adaptive decentralized artificial intelligence(ADAI)method for signal recognition of DSS is proposed,to improve the entire generalization performance.By fine-tuning pre-trained model with the unlabeled data in each domain,the ADAI scheme can train a series of adaptive AI models for all target domains,significantly reducing the false alarm rate(FAR)and missing alarm rate(MAR)induced by domain differences.The field tests about intrusion signal recognition with distributed optical fiber sensors system demonstrate the efficacy of the ADAI scheme,showcasing a FAR of merely 4.3%and 0%,along with a MAR of only 1.4%and 2.7%within two specific target domains.The ADAI scheme is expected to offer a practical paradigm for signal recognition of DSS in multiple application fields. 展开更多
关键词 artificial intelligence(AI) signal recognition distributed sensor systems(DSS) distributed optical fiber sensors(DOFS)
在线阅读 下载PDF
Comparative Study on VQ-Based Efficient Mandarin Speech Recognition Method
20
作者 谢湘 赵军辉 匡镜明 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期266-270,共5页
A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set r... A VQ based efficient speech recognition method is introduced, and the key parameters of this method are comparatively studied. This method is especially designed for mandarin speaker dependent small size word set recognition. It has less complexity, less resource consumption but higher ARR (accurate recognition rate) compared with traditional HMM or NN approach. A large scale test on the task of 11 mandarin digits recognition shows that the WER(word error rate) can reach 3 86%. This method is suitable for being embedded in PDA (personal digital assistant), mobile phone and so on to perform voice controlling like digits dialing, name dialing, calculating, voice commanding, etc. 展开更多
关键词 speech recognition vector quantization(VQ) speaker dependent digits recognition
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部