A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment ...A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.展开更多
目的:应用Logistic多元回归分析和ROC曲线探讨年龄因素对诊断儿童子午线弱视有无影响。方法:研究对象为2008/2011年间在我院眼科门诊就诊,以散光为主要屈光异常并排除屈光参差及斜视的4~8岁儿童共1005例1910眼。采用Logistic多元回归...目的:应用Logistic多元回归分析和ROC曲线探讨年龄因素对诊断儿童子午线弱视有无影响。方法:研究对象为2008/2011年间在我院眼科门诊就诊,以散光为主要屈光异常并排除屈光参差及斜视的4~8岁儿童共1005例1910眼。采用Logistic多元回归分析年龄、性别、柱镜绝对值程度、球镜绝对值程度、散光类型对诊断子午线性弱视的影响,通过ROC曲线下面积(area under the ROC curve,AUC)分析进一步明确患者年龄因素对诊断子午线弱视的影响。结果:分别建立Logistic回归模型1(包括性别、柱镜绝对值程度、球镜绝对值程度、散光类型四个变量)和模型2(前四个变量再加上年龄)。两个模型的Logistic回归分析都提示柱镜绝对值程度是诊断子午线性弱视的影响因素,模型2的Logistic回归分析同时提示年龄是诊断子午线性弱视的影响因素。模型1的AUC为0.64,模型2的AUC为0.74,两者比较有统计学差异(P<0.05),表明不同年龄儿童ROC的灵敏度和特异度存在一定差异。结论:运用Logistic回归和ROC曲线综合分析结果表明,在儿童子午线性弱视诊断中,需要充分考虑患者年龄因素对诊断的影响。展开更多
基金supported by the National Social Science Fund of China(Grand No.21XTJ001).
文摘A Receiver Operating Characteristic(ROC)analysis of a power is important and useful in clinical trials.A Classical Conditional Power(CCP)is a probability of a classical rejection region given values of true treatment effect and interim result.For hypotheses and reversed hypotheses under normal models,we obtain analytical expressions of the ROC curves of the CCP,find optimal ROC curves of the CCP,investigate the superiority of the ROC curves of the CCP,calculate critical values of the False Positive Rate(FPR),True Positive Rate(TPR),and cutoff of the optimal CCP,and give go/no go decisions at the interim of the optimal CCP.In addition,extensive numerical experiments are carried out to exemplify our theoretical results.Finally,a real data example is performed to illustrate the go/no go decisions of the optimal CCP.
文摘目的:应用Logistic多元回归分析和ROC曲线探讨年龄因素对诊断儿童子午线弱视有无影响。方法:研究对象为2008/2011年间在我院眼科门诊就诊,以散光为主要屈光异常并排除屈光参差及斜视的4~8岁儿童共1005例1910眼。采用Logistic多元回归分析年龄、性别、柱镜绝对值程度、球镜绝对值程度、散光类型对诊断子午线性弱视的影响,通过ROC曲线下面积(area under the ROC curve,AUC)分析进一步明确患者年龄因素对诊断子午线弱视的影响。结果:分别建立Logistic回归模型1(包括性别、柱镜绝对值程度、球镜绝对值程度、散光类型四个变量)和模型2(前四个变量再加上年龄)。两个模型的Logistic回归分析都提示柱镜绝对值程度是诊断子午线性弱视的影响因素,模型2的Logistic回归分析同时提示年龄是诊断子午线性弱视的影响因素。模型1的AUC为0.64,模型2的AUC为0.74,两者比较有统计学差异(P<0.05),表明不同年龄儿童ROC的灵敏度和特异度存在一定差异。结论:运用Logistic回归和ROC曲线综合分析结果表明,在儿童子午线性弱视诊断中,需要充分考虑患者年龄因素对诊断的影响。