期刊文献+
共找到359篇文章
< 1 2 18 >
每页显示 20 50 100
Data network traffic analysis and optimization strategy of real-time power grid dynamic monitoring system for wide-frequency measurements 被引量:4
1
作者 Jinsong Li Hao Liu +2 位作者 Wenzhuo Li Tianshu Bi Mingyang Zhao 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期131-142,共12页
The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information ... The application and development of a wide-area measurement system(WAMS)has enabled many applications and led to several requirements based on dynamic measurement data.Such data are transmitted as big data information flow.To ensure effective transmission of wide-frequency electrical information by the communication protocol of a WAMS,this study performs real-time traffic monitoring and analysis of the data network of a power information system,and establishes corresponding network optimization strategies to solve existing transmission problems.This study utilizes the traffic analysis results obtained using the current real-time dynamic monitoring system to design an optimization strategy,covering the optimization in three progressive levels:the underlying communication protocol,source data,and transmission process.Optimization of the system structure and scheduling optimization of data information are validated to be feasible and practical via tests. 展开更多
关键词 Power system Data network Wide-frequency information real-time system Traffic analysis optimization strategy
在线阅读 下载PDF
Evolutionary-assisted reinforcement learning for reservoir real-time production optimization under uncertainty 被引量:2
2
作者 Zhong-Zheng Wang Kai Zhang +6 位作者 Guo-Dong Chen Jin-Ding Zhang Wen-Dong Wang Hao-Chen Wang Li-Ming Zhang Xia Yan Jun Yao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期261-276,共16页
Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality r... Production optimization has gained increasing attention from the smart oilfield community because it can increase economic benefits and oil recovery substantially.While existing methods could produce high-optimality results,they cannot be applied to real-time optimization for large-scale reservoirs due to high computational demands.In addition,most methods generally assume that the reservoir model is deterministic and ignore the uncertainty of the subsurface environment,making the obtained scheme unreliable for practical deployment.In this work,an efficient and robust method,namely evolutionaryassisted reinforcement learning(EARL),is proposed to achieve real-time production optimization under uncertainty.Specifically,the production optimization problem is modeled as a Markov decision process in which a reinforcement learning agent interacts with the reservoir simulator to train a control policy that maximizes the specified goals.To deal with the problems of brittle convergence properties and lack of efficient exploration strategies of reinforcement learning approaches,a population-based evolutionary algorithm is introduced to assist the training of agents,which provides diverse exploration experiences and promotes stability and robustness due to its inherent redundancy.Compared with prior methods that only optimize a solution for a particular scenario,the proposed approach trains a policy that can adapt to uncertain environments and make real-time decisions to cope with unknown changes.The trained policy,represented by a deep convolutional neural network,can adaptively adjust the well controls based on different reservoir states.Simulation results on two reservoir models show that the proposed approach not only outperforms the RL and EA methods in terms of optimization efficiency but also has strong robustness and real-time decision capacity. 展开更多
关键词 Production optimization Deep reinforcement learning Evolutionary algorithm real-time optimization optimization under uncertainty
在线阅读 下载PDF
Real-Time Optimization Model for Continuous Reforming Regenerator
3
作者 Jiang Shubao Jiang Hongbo +1 位作者 Li Zhenming Tian Jianhui 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期90-103,共14页
An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal colloca... An approach for the simulation and optimization of continuous catalyst-regenerative process of reforming is proposed in this paper.Compared to traditional method such as finite difference method,the orthogonal collocation method is less time-consuming and more accurate,which can meet the requirement of real-time optimization(RTO).In this paper,the equation-oriented method combined with the orthogonal collocation method and the finite difference method is adopted to build the RTO model for catalytic reforming regenerator.The orthogonal collocation method was adopted to discretize the differential equations and sequential quadratic programming(SQP)algorithm was used to solve the algebraic equations.The rate constants,active energy and reaction order were estimated,with the sum of relative errors between actual value and simulated value serving as optimization objective function.The model can quickly predict the fields of component concentration,temperature and pressure inside the regenerator under different conditions,as well as the real-time optimized conditions for industrial reforming regenerator. 展开更多
关键词 catalytic reforming regenerator KINETICS model orthogonal collocation method real-time optimization
在线阅读 下载PDF
Multi-object optimization design for differential and grading toothed roll crusher using a genetic algorithm 被引量:12
4
作者 ZHAO La-la WANG Zhong-bin ZANG Feng 《Journal of China University of Mining and Technology》 EI 2008年第2期316-320,共5页
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th... Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved. 展开更多
关键词 differential and grading toothed roll crusher crank-rocker mechanism genetic algorithm multi-object optimization
在线阅读 下载PDF
Energy Optimization of the Fin/Rudder Roll Stabilization System Based on the Multi-objective Genetic Algorithm (MOGA) 被引量:3
5
作者 Lijun Yu Shaoying Liu Fanming Liu Hui Wang 《Journal of Marine Science and Application》 CSCD 2015年第2期202-207,共6页
Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder r... Energy optimization is one of the key problems for ship roll reduction systems in the last decade. According to the nonlinear characteristics of ship motion, the four degrees of freedom nonlinear model of Fin/Rudder roll stabilization can be established. This paper analyzes energy consumption caused by overcoming the resistance and the yaw, which is added to the fin/rudder roll stabilization system as new performance index. In order to achieve the purpose of the roll reduction, ship course keeping and energy optimization, the self-tuning PID controller based on the multi-objective genetic algorithm (MOGA) method is used to optimize performance index. In addition, random weight coefficient is adopted to build a multi-objective genetic algorithm optimization model. The objective function is improved so that the objective function can be normalized to a constant level. Simulation results showed that the control method based on MOGA, compared with the traditional control method, not only improves the efficiency of roll stabilization and yaw control precision, but also optimizes the energy of the system. The proposed methodology can get a better performance at different sea states. 展开更多
关键词 ship motion energy optimization ship roll reduction performance index self-tuning PID multi-objective geneticalgorithm (MOGA) roll stabilization fin/rudder roll stabilization yaw control precision
在线阅读 下载PDF
Distributed optimization of electricity-Gas-Heat integrated energy system with multi-agent deep reinforcement learning 被引量:4
6
作者 Lei Dong Jing Wei +1 位作者 Hao Lin Xinying Wang 《Global Energy Interconnection》 EI CAS CSCD 2022年第6期604-617,共14页
The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high co... The coordinated optimization problem of the electricity-gas-heat integrated energy system(IES)has the characteristics of strong coupling,non-convexity,and nonlinearity.The centralized optimization method has a high cost of communication and complex modeling.Meanwhile,the traditional numerical iterative solution cannot deal with uncertainty and solution efficiency,which is difficult to apply online.For the coordinated optimization problem of the electricity-gas-heat IES in this study,we constructed a model for the distributed IES with a dynamic distribution factor and transformed the centralized optimization problem into a distributed optimization problem in the multi-agent reinforcement learning environment using multi-agent deep deterministic policy gradient.Introducing the dynamic distribution factor allows the system to consider the impact of changes in real-time supply and demand on system optimization,dynamically coordinating different energy sources for complementary utilization and effectively improving the system economy.Compared with centralized optimization,the distributed model with multiple decision centers can achieve similar results while easing the pressure on system communication.The proposed method considers the dual uncertainty of renewable energy and load in the training.Compared with the traditional iterative solution method,it can better cope with uncertainty and realize real-time decision making of the system,which is conducive to the online application.Finally,we verify the effectiveness of the proposed method using an example of an IES coupled with three energy hub agents. 展开更多
关键词 Integrated energy system Multi-agent system Distributed optimization Multi-agent deep deterministic policy gradient real-time optimization decision
在线阅读 下载PDF
Real-time scheduling strategy for microgrids considering operation interval division of DGs and batteries 被引量:7
7
作者 Chunyang Liu Yinghao Qin Hengxu Zhang 《Global Energy Interconnection》 2020年第5期442-452,共11页
Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time sched... Real-time scheduling as an on-line optimization process must output dispatch results in real time. However, the calculation time required and the economy have a trade-off relationship. In response to a real-time scheduling problem, this paper proposes a real-time scheduling strategy considering the operation interval division of distributed generators(DGs) and batteries in the microgrid. Rolling scheduling models, including day-ahead scheduling and hours-ahead scheduling, are established, where the latter considers the future state-of-charge deviations. For the real-time scheduling, the output powers of the DGs are divided into two intervals based on the ability to track the day-ahead and hours-ahead schedules. The day-ahead and hours-ahead scheduling ensure the economy, whereas the real-time scheduling overcomes the timeconsumption problem. Finally, a grid-connected microgrid example is studied, and the simulation results demonstrate the effectiveness of the proposed strategy in terms of economic and real-time requirements. 展开更多
关键词 MICROGRID real-time scheduling rolling scheduling Interval division
在线阅读 下载PDF
LDA-ID:An LDA-Based Framework for Real-Time Network Intrusion Detection 被引量:4
8
作者 Weidong Zhou Shengwei Lei +1 位作者 Chunhe Xia Tianbo Wang 《China Communications》 SCIE CSCD 2023年第12期166-181,共16页
Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time ... Network intrusion poses a severe threat to the Internet.However,existing intrusion detection models cannot effectively distinguish different intrusions with high-degree feature overlap.In addition,efficient real-time detection is an urgent problem.To address the two above problems,we propose a Latent Dirichlet Allocation topic model-based framework for real-time network Intrusion Detection(LDA-ID),consisting of static and online LDA-ID.The problem of feature overlap is transformed into static LDA-ID topic number optimization and topic selection.Thus,the detection is based on the latent topic features.To achieve efficient real-time detection,we design an online computing mode for static LDA-ID,in which a parameter iteration method based on momentum is proposed to balance the contribution of prior knowledge and new information.Furthermore,we design two matching mechanisms to accommodate the static and online LDA-ID,respectively.Experimental results on the public NSL-KDD and UNSW-NB15 datasets show that our framework gets higher accuracy than the others. 展开更多
关键词 feature overlap LDA-ID optimal topic number determination real-time intrusion detection
在线阅读 下载PDF
Application of the asynchronous advantage actor–critic machine learning algorithm to real-time accelerator tuning 被引量:3
9
作者 Yun Zou Qing-Zi Xing +4 位作者 Bai-Chuan Wang Shu-Xin Zheng Cheng Cheng Zhong-Ming Wang Xue-Wu Wang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第10期133-141,共9页
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre... This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively. 展开更多
关键词 real-time BEAM tuning Parameter optimization ASYNCHRONOUS ADVANTAGE actor–critic algorithm Low-energy BEAM transport
在线阅读 下载PDF
Sensor placement of long-term health monitoring for large bridges based on the real-time correction of finite element model
10
作者 陈悦 ZHOU Jian-ting SHEN Pei-wen 《Journal of Chongqing University》 CAS 2013年第3期123-130,共8页
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result... The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge. 展开更多
关键词 large bridges health monitoring real-time correction optimal sensor placement
在线阅读 下载PDF
Research on Collaboration Theory of Distributed Measurement System and Real-Time of Communication Platform
11
作者 SHENYan 《Journal of Electronic Science and Technology of China》 2005年第1期95-95,共1页
关键词 distributed measurement system agent technology swarm intellgence Particle Swarm optimization algorithm Collaboration model Switched Ethernet real-time Scheduling AEROENGINE
在线阅读 下载PDF
基于小波包分解和神经网络集成群的滚动轴承故障诊断
12
作者 柴立平 孟壮壮 +1 位作者 石海峡 李强 《合肥工业大学学报(自然科学版)》 北大核心 2025年第4期447-454,共8页
文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back p... 文章提出一种将多个神经网络相结合的神经网络集成群算法进行滚动轴承故障诊断。首先对原始振动信号进行小波包变换,分别采用小波包能量和小波包样本熵作为特征向量;其次采用多个粒子群优化反向传播(particle swarm optimization-back propagation,PSO-BP)神经网络分别对轴承进行故障诊断,比较分析小波包能量和小波包样本熵作为特征向量的适配程度;再以多个神经网络作为神经网络集成群的基础子网络,通过统计耦合、输出耦合和统计输出耦合形成神经网络集成群的二级网络;最后通过最终统计耦合输出神经网络集成群的分类结果。研究结果表明,该方法可获得理想的滚动轴承故障诊断准确率,在负载变化时具有良好的泛化性能。 展开更多
关键词 滚动轴承 故障诊断 小波包变换 粒子群优化反向传播神经网络 神经网络集成群
在线阅读 下载PDF
基于信息间隙决策理论的多重不确定性滚动优化调度
13
作者 张明光 高燕霞 +1 位作者 张飞祥 王海滨 《兰州理工大学学报》 北大核心 2025年第1期72-82,共11页
针对区域综合能源系统(RIES)运行中存在的不确定性问题,借助滚动优化调度方法,结合信息间隙决策理论(IGDT),将其转化为运行经济性,从而构建了RIES双层鲁棒优化调度模型.模型上层求解系统不确定度;下层通过模型收益基准值,将不确定性量化... 针对区域综合能源系统(RIES)运行中存在的不确定性问题,借助滚动优化调度方法,结合信息间隙决策理论(IGDT),将其转化为运行经济性,从而构建了RIES双层鲁棒优化调度模型.模型上层求解系统不确定度;下层通过模型收益基准值,将不确定性量化,确保模型运行收益不低于期望值,实现调度动态化.通过调整模型的水平因子,得到不同的调度方案,从而获得不同的调度收益期望值.决策者可根据对风险的规避程度,选择合适的调度方案.最后,对改进IEEE33节点配电网、19节点热网及20节点天然气网组成的RIES系统进行测试,结果表明在特定场景下,与确定性模型相比,鲁棒模型可将系统规避风险的程度提高5%. 展开更多
关键词 区域综合能源系统 多源协调调度 滚动优化 信息间隙决策理论 源-荷不确定性
在线阅读 下载PDF
基于CEEMDAN-WTD-DBO的轴承振动信号降噪方法
14
作者 吴云飞 龙江 +1 位作者 魏友 曾信凌 《现代电子技术》 北大核心 2025年第6期91-98,共8页
针对高噪声环境下难以提取轴承故障频率特征的问题,提出一种结合完备集合经验模态分解(CEEMDAN)、小波阈值降噪(WTD)和蜣螂优化算法(DBO)的方法。使用CEEMDAN将信号分解成多个固有模态函数(IMFs),并根据综合评价指标对IMFs信号进行选取... 针对高噪声环境下难以提取轴承故障频率特征的问题,提出一种结合完备集合经验模态分解(CEEMDAN)、小波阈值降噪(WTD)和蜣螂优化算法(DBO)的方法。使用CEEMDAN将信号分解成多个固有模态函数(IMFs),并根据综合评价指标对IMFs信号进行选取;随后使用WTD对选取的信号进行降噪处理,使用DBO对改进的阈值函数的参数进行自适应选取,在有效减小噪声水平后进行信号重组。将重组信号进行包络谱分析,得出所提方法能有效地对信号进行降噪与故障特征提取。将该方法应用于滚动轴承的仿真信号和实际轴承数据,结果表明,基于参数优化的CEEMDAN-WTD-DBO方法相较于传统的单一降噪方法,在减少随机噪声与提取故障特征频率能力方面表现更出色。 展开更多
关键词 滚动轴承 振动信号 小波阈值降噪 模态分解 蜣螂优化算法 包络谱 故障特征提取
在线阅读 下载PDF
H型钢开坯轧制腹板增厚机理及规程优化
15
作者 汤磊 张文满 沈晓辉 《安徽工业大学学报(自然科学版)》 2025年第2期136-142,共7页
H型钢轧制不均匀变形主要集中在异形孔开坯轧制阶段,异形孔轧制尺寸精度控制对后续的万能轧制有重要影响。为此,采用有限元分析软件MARC/SuperForm对尺寸为900 mm×510 mm×130 mm异形坯的开坯轧制过程进行模拟仿真,分析腹板厚... H型钢轧制不均匀变形主要集中在异形孔开坯轧制阶段,异形孔轧制尺寸精度控制对后续的万能轧制有重要影响。为此,采用有限元分析软件MARC/SuperForm对尺寸为900 mm×510 mm×130 mm异形坯的开坯轧制过程进行模拟仿真,分析腹板厚度变化的关键影响因素及其影响机制。根据模拟结果,优化H型钢开坯轧制规程,即调整压下量分配,降低最后一道次腹板的压下量,减小腹板和翼缘的延伸率差异,从而降低腹板增厚程度。结果表明:腹板厚度在变形区出口附近显著增加,开坯结束时腹板厚度相比设定厚度增加了8.4 mm,这主要是腹板与翼缘的延伸率差异所致。变形区腹板金属承受三向压力,轧件离开变形区时,轧辊的压力和横向阻力逐渐消失,但翼缘对腹板施加的轧向压力并不会立即消失,腹板继续受到轧向压应力作用,导致腹板厚度继续增厚;腹板的延伸率通常大于翼缘,特别是在压下量较大的情况下,延伸率差异显著,导致轧件出变形区后的增厚量较大。采用优化的H型钢开坯规程,开坯轧制结束腹板厚度增厚量由原先的8.4 mm减至3.7 mm,可有效提高腹板部位的尺寸精度。 展开更多
关键词 H型钢 开坯轧制 万能轧制 异形孔 腹板 辊缝 规程优化 有限元模拟
在线阅读 下载PDF
基于优化SVM的轻载工况滚动轴承故障诊断
16
作者 万庆 袁志鹏 +1 位作者 王二振 曹朋 《教练机》 2025年第1期63-68,共6页
特征提取是故障智能诊断的关键步骤,然而不同的特征提取方法所得到的特征不同,导致诊断结果也可能有所差异,且增加了人工特征选择的难度和不确定性。本文基于所搭建的试验台对不同径向载荷工况下正常状态、内圈故障、外圈故障轴承的振... 特征提取是故障智能诊断的关键步骤,然而不同的特征提取方法所得到的特征不同,导致诊断结果也可能有所差异,且增加了人工特征选择的难度和不确定性。本文基于所搭建的试验台对不同径向载荷工况下正常状态、内圈故障、外圈故障轴承的振动信号进行了采集和分析,并针对轻载工况下滚动轴承故障诊断问题,结合支持向量机(SVM),利用遗传算法进行参数优化,通过原始数据实现轴承故障的分类识别。研究结果表明:不同径向载荷条件下故障信号表现出来的特征指标不同,在轴承故障诊断中使用传统的故障诊断会出现一定的误差;考虑径向载荷的影响、采用遗传算法优化的SVM故障诊断模型能够对故障类型进行更加有效的诊断,可提升准确率并降低计算成本。 展开更多
关键词 轻载 滚动轴承 故障诊断 优化SVM
在线阅读 下载PDF
异构线路下考虑组合策略的智能网联公交运行控制方法
17
作者 何林林 胡宝雨 《交通运输研究》 2025年第1期39-47,78,共10页
为应对智能网联公交线路与传统人工驾驶公交线路并存场景下,智能网联公交车头时距不均匀以及站点、交叉口排队等问题引起的运行延误,提出了采用车速控制和信号优先两种策略组合的优化控制方法,以调整智能网联公交运行状态。首先,考虑节... 为应对智能网联公交线路与传统人工驾驶公交线路并存场景下,智能网联公交车头时距不均匀以及站点、交叉口排队等问题引起的运行延误,提出了采用车速控制和信号优先两种策略组合的优化控制方法,以调整智能网联公交运行状态。首先,考虑节能驾驶和信号控制等约束条件,以最小化车头时距偏差和智能网联公交进入节点排队队列的次数为目标,建立双目标混合整数优化控制模型。然后,基于滚动优化的触发时刻,采用NSGA-Ⅱ算法求解优化模型,通过多次迭代更新最优解,输出速度控制和信号优先方案。最后,基于北京市41路公交数据建立仿真案例进行验证和对比分析。仿真结果表明,与无控制情形相比,仅速度优化控制方法使车头时距偏差降低了45%,站点和交叉口排队次数分别降低了25%和25%;而本文提出的优化控制方法使车头时距偏差降低了66%,站点和交叉口排队次数分别降低了50%和75%,表明该方法能显著提高智能网联公交运行稳定性,有效降低节点拥堵,提升智能网联公交运营效率和服务水平。 展开更多
关键词 智能网联公交 车速控制 信号优先 滚动优化 NSGA-Ⅱ
在线阅读 下载PDF
基于虚拟同步的V2G调度控制策略
18
作者 郑伟 张乐 +3 位作者 张建军 吴长令 赵浩然 闫阔 《南方能源建设》 2025年第2期116-127,共12页
[目的]随着电动汽车数量的快速增加,电动汽车储能对电网的影响日益显著。为了实现电动汽车充电站与电网的动态交互,利用电动汽车储能调节负荷,以减小峰谷差和对电网的冲击,文章提出了一种基于虚拟同步技术的控制调度策略,考虑将无功响... [目的]随着电动汽车数量的快速增加,电动汽车储能对电网的影响日益显著。为了实现电动汽车充电站与电网的动态交互,利用电动汽车储能调节负荷,以减小峰谷差和对电网的冲击,文章提出了一种基于虚拟同步技术的控制调度策略,考虑将无功响应纳入新型电力系统。[方法]首先,文章采用日前申请机制,建立了双层滚动优化调度模型,用于制定各充电站的充电计划。随后,针对V2G(Vehicle to Grid)系统的工作模式和特点,提出了一种改进型虚拟同步控制方式。该控制方式下,功率能够双向流动,并通过V2G调度控制策略进行最优分配,从而实现有功和无功的调度响应。[结果]实验结果表明:所提出的策略能够有效减小电动汽车充放电对电力系统的冲击,增强系统的稳定性。此外,通过将上层调度指令下发到下层V2G变换器控制上,可以很好地实现充电站与电网的双向互动。[结论]上层调度策略与下层变换器控制策略的结合,不仅满足了V2G系统的基本需求,还展现出良好的输出特性。这一控制调度策略为未来电力系统的稳定运行提供了有力保障。 展开更多
关键词 虚拟同步发电机 电动汽车 V2G 实时滚动优化 调度策略 控制策略
在线阅读 下载PDF
Optimal Static Partition Configuration in ARINC653 System 被引量:4
19
作者 Sheng-Lin Gui Lei Luo Sen-Sen Tang Yang Meng 《Journal of Electronic Science and Technology》 CAS 2011年第4期373-378,共6页
ARINC653 systems, which have been widely used in avionics industry, are an important class of safety-critical applications. Partitions are the core concept in the Arinc653 system architecture. Due to the existence of ... ARINC653 systems, which have been widely used in avionics industry, are an important class of safety-critical applications. Partitions are the core concept in the Arinc653 system architecture. Due to the existence of partitions, the system designer must allocate adequate time slots statically to each partition in the design phase. Although some time slot allocation policies could be borrowed from task scheduling policies, no existing literatures give an optimal allocation policy. In this paper, we present a partition configuration policy and prove that this policy is optimal in the sense that if this policy fails to configure adequate time slots to each partition, nor do other policies. Then, by simulation, we show the effects of different partition configuration policies on time slot allocation of partitions and task response time, respectively. 展开更多
关键词 ARINC653 earliest-next release time first policy optimal partition configuration policy real-time systems.
在线阅读 下载PDF
基于格拉姆角场和PSO-CNN的滚动轴承故障诊断方法
20
作者 张国栋 尹强 羊柳 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第4期301-308,共8页
针对卷积神经网络的结构对滚动轴承故障诊断精度有较大影响的问题,提出一种基于格拉姆角场和粒子群优化卷积神经网络结构的故障诊断方法。采用格拉姆角场对一维轴承振动数据重构,保留原始数据信息的同时包含了时间相关性;采用粒子群优... 针对卷积神经网络的结构对滚动轴承故障诊断精度有较大影响的问题,提出一种基于格拉姆角场和粒子群优化卷积神经网络结构的故障诊断方法。采用格拉姆角场对一维轴承振动数据重构,保留原始数据信息的同时包含了时间相关性;采用粒子群优化算法对编码后的卷积神经网络结构迭代寻优。利用西储大学的轴承数据集进行试验验证,试验结果表明,该方法可自适应生成网络结构,平均诊断精度为99%,相对于其他主流卷积神经网络结构可以获得更好的故障诊断精度。 展开更多
关键词 格拉姆角场 粒子群优化算法 卷积神经网络 滚动轴承 故障诊断
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部