This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In additio...This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.展开更多
Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luosha...Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.展开更多
As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.D...As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.展开更多
Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive ...Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive maintenance strategy,which led to the development of condition-based maintenance.Realtime condition monitoring(RTCM)is the ability to perform condition monitoring in real-time and has the ability to alert maintenance and operations of abnormal conditions.These alarms can be used as an indication leading to a problem,and if a suitable corrective action is initiated in time,it could result in significant savings of equipment downtime and repair costs.This study aims to compare some maintenance performance indicators prior to and after implementation of RTCM strategy at a mine site using some tests of statistical significance.The study also indicated the presence of seasonality in the data,and thus the data was deseasonalized and detrended prior to being subjected to the statistical tests.Finally,the results indicated that RTCM strategy has proven to be successful in improving the availability for some of the failure categories chosen in this study.展开更多
The tire blowout or severe leakage real-time monitoring is one of key technologies for developing a tire blowout automatic braking system.An indirect real-time monitoring method to fuse analyses of tire vibration and ...The tire blowout or severe leakage real-time monitoring is one of key technologies for developing a tire blowout automatic braking system.An indirect real-time monitoring method to fuse analyses of tire vibration and effective radius is provided in this paper,and a monitoring system is developed.The calibration and related test results showthat the system can detect the tire blowout in low and middle vehicle speeds and the severe leakage in all speeds timely and accurately.展开更多
A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rat...A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.展开更多
The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated result...The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.展开更多
After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ...After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ.According to functional requirements of registration system and the target development platform,we described the detailed process of task division, priority assignment,and synchronization and communication,and optimized the real-time performance of system in the premise of stability assurance.Fi...展开更多
From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master...From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool ,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment, strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the real-time requirement of DC hoist,but also can give correct diagnosis results.展开更多
Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxi...Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.展开更多
Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SP...Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics.展开更多
Monitoring and assessment of underground climatic conditions are necessary to identify potential hazards and initiate remedial measures in advance that otherwise would lead to disastrous conditions.This paper discusse...Monitoring and assessment of underground climatic conditions are necessary to identify potential hazards and initiate remedial measures in advance that otherwise would lead to disastrous conditions.This paper discusses the concept of real-time monitoring and assessment of climatic conditions in a typical underground mine using sensors and GIS tools by utilizing a laboratory scale model.Typical ventilation parameters including temperature,humidity,and gas concentrations were monitored using sensors in a laboratory setting and various ratios and indices proposed by previous researchers for interpreting fire gases and spontaneous combustion conditions are predicted from the monitored data.GIS tools were used to display this information in real-time on a mine map that would help in creating a safe and comfortable working environment for personnel and equipment working underground.展开更多
The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to case...The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.展开更多
To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an ...To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.展开更多
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restr...Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.展开更多
The trigger action response plans (TARPs) are inherent to managing the multiple hazards such as: high gas content with multiple coal seams, high spontaneous combustion (sponcom) propensity, heat and ventilation, ...The trigger action response plans (TARPs) are inherent to managing the multiple hazards such as: high gas content with multiple coal seams, high spontaneous combustion (sponcom) propensity, heat and ventilation, TARPs aim to provide assurance and guidance when the situation deviates from the original plan or there is a change conditions that could he hazardous, Over the years, learnings from various incidents has continuously required the coal operations to re-visit the TARP trigger values that were based on historic data or based on guidance values from the industry, In most cases, the background to the basis of TARP statistical data, viz,, average, maximum, hourly, daily for the monitoring or sampling location is also unknown, Introduction of real-time monitoring devices to monitor the gases and airflows has provided greater understanding of the hazard scenarios and their controls, This paper analyses the carbon monoxide data from operating longwall mines and compares these with the historic trigger values to understand the changes and determine improvement opportunities while setting trigger levels in the TARPs, As an example of setting trigger values, those used in during the sealing of a panel are explored in terms of setting values based upon the sampling location and the level of risk, It is envisaged that the learning's shared herein would further enhance the understanding and management of multiple hazards in Australian coal mines,展开更多
A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sectio...A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sections in order to reduce the computation required for real-time monitoring. Our results suggest that it is generally feasible to apply the initial optimal maternal and fetal ECG combination vectors to extract the fECG and maternal ECG in subsequent recorded sections.展开更多
基金supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (No.2022M3J7A1062940,2021R1A5A6002853,and 2021R1A2C3011585)supported by the Technology Innovation Program (20015577)funded by the Ministry of Trade,Industry&Energy (MOTIE,Korea)。
文摘This review explores glucose monitoring and management strategies,emphasizing the need for reliable and userfriendly wearable sensors that are the next generation of sensors for continuous glucose detection.In addition,examines key strategies for designing glucose sensors that are multi-functional,reliable,and cost-effective in a variety of contexts.The unique features of effective diabetes management technology are highlighted,with a focus on using nano/biosensor devices that can quickly and accurately detect glucose levels in the blood,improving patient treatment and control of potential diabetes-related infections.The potential of next-generation wearable and touch-sensitive nano biomedical sensor engineering designs for providing full control in assessing implantable,continuous glucose monitoring is also explored.The challenges of standardizing drug or insulin delivery doses,low-cost,real-time detection of increased blood sugar levels in diabetics,and early digital health awareness controls for the adverse effects of injectable medication are identified as unmet needs.Also,the market for biosensors is expected to expand significantly due to the rising need for portable diagnostic equipment and an ever-increasing diabetic population.The paper concludes by emphasizing the need for further research and development of glucose biosensors to meet the stringent requirements for sensitivity and specificity imposed by clinical diagnostics while being cost-effective,stable,and durable.
文摘Landslides have occurred frequently in the Luoshan mining area because of disordered mining.This paper discusses the landforms and physiognomy,hydro-meteorology,formation lithology,and geologic structure of the Luoshan mining area.It also describes the factors influencing the slope stability of landslide No.Ⅲ,determines the general parameters and typical section plane,analyzes the stress-strain state of the No.Ⅲ slope,and calculates its safety factors with FLAC3 D under saturated and natural conditions.Based on a stability analysis,a remote real-time monitoring system was applied to the No.Ⅲ slope,and these monitoring data were collected and analyzed.
基金financially supported by the National Key Research and Development Program of China(No.2019YFC1805400)。
文摘As a new technical means that can detect abnormal signs of water inrush in advance and give an early warning,the automatic monitoring and early warning of water inrush in mines has been widely valued in recent years.Due to the many factors affecting water inrush and the complicated water inrush mechanism,many factors close to water inrush may have precursory abnormal changes.At present,the existing monitoring and early warning system mainly uses a few monitoring indicators such as groundwater level,water influx,and temperature,and performs water inrush early warning through the abnormal change of a single factor.However,there are relatively few multi-factor comprehensive early warning identification models.Based on the analysis of the abnormal changes of precursor factors in multiple water inrush cases,11 measurable and effective indicators including groundwater flow field,hydrochemical field and temperature field are proposed.Finally,taking Hengyuan coal mine as an example,6 indicators with long-term monitoring data sequences were selected to establish a single-index hierarchical early-warning recognition model,a multi-factor linear recognition model,and a comprehensive intelligent early-warning recognition model.The results show that the correct rate of early warning can reach 95.2%.
文摘Strategic maintenance plays a key role in ensuring high availability and utilization of the haul trucks,and as equipment began to grow more complex towards the end of the 20th century,there was a need for a proactive maintenance strategy,which led to the development of condition-based maintenance.Realtime condition monitoring(RTCM)is the ability to perform condition monitoring in real-time and has the ability to alert maintenance and operations of abnormal conditions.These alarms can be used as an indication leading to a problem,and if a suitable corrective action is initiated in time,it could result in significant savings of equipment downtime and repair costs.This study aims to compare some maintenance performance indicators prior to and after implementation of RTCM strategy at a mine site using some tests of statistical significance.The study also indicated the presence of seasonality in the data,and thus the data was deseasonalized and detrended prior to being subjected to the statistical tests.Finally,the results indicated that RTCM strategy has proven to be successful in improving the availability for some of the failure categories chosen in this study.
基金Sponsored by the Applied Foundation Research Project of Suzhou(SYFG0932)
文摘The tire blowout or severe leakage real-time monitoring is one of key technologies for developing a tire blowout automatic braking system.An indirect real-time monitoring method to fuse analyses of tire vibration and effective radius is provided in this paper,and a monitoring system is developed.The calibration and related test results showthat the system can detect the tire blowout in low and middle vehicle speeds and the severe leakage in all speeds timely and accurately.
基金Meg-science Program of the Chinese Academy of Sciences (No. 19981303)
文摘A new system called alternate data acquisition and real-time monitoring system has been developed for long-time discharge in tokamak operation. It can support continuous on-line data acquisition at a high sampling rate and a graphic display of the plasma parameters during the discharge. Thus operators can monitor and control the plasma state in real time. An application of this system has been demonstrated on the HT-7 tokamak.
基金Funded by the Special Found of the Ministry of Education for Doctor Station Subject(No.20115522110001)
文摘The process of optimized placement of long-term health monitoring sensors for large bridges generally begins with finite element models, but there will arise great discrepancies between theoretically-calculated results and actual measurements.Therefore, rectified finite element models need to be rectified by virtue of model rectifying technology. Firstly, the result of construction monitoring and finished state load test is used to real-time modification of finite element model. Subsequently, an accurate finite element model is established. Secondly, the optimizing the layout of sensor with following orthogonality guarantees orthogonal property and linear independence for the measured data. Lastly, the effectiveness and feasibility of method in the paper is tested by real-time modifying finite element model and optimizing the layout of sensor for Nujiang Bridge.
基金Funded by the National Natural Science Foundation of China(No.60772089)China Postdoctoral Science Foundation(No.20080440939)
文摘After analyzing the basic composition and principles of multicolor printing system,we presented a design of real-time monitoring system for printing registration based on multitask real-time operating system μC/OS-Ⅱ.According to functional requirements of registration system and the target development platform,we described the detailed process of task division, priority assignment,and synchronization and communication,and optimized the real-time performance of system in the premise of stability assurance.Fi...
文摘From the requirements of industrial production,an integrated fault monitoring,diagnosis and repairing system is suggested in this paper. This new scheme of fault monitoring and diagnosis system is realized by a master-slave real-time expert system,and a real-time expert system tool for this system is also developed accordingly. As an example of application of this tool ,a realtime expert system for fault monitoring and diagnosis on DC mine hoist is developed. Experiments show that this tool possesses better supporting environment, strong knowledge acquisition ability, and convenience for use. The system developed by this tool not only meets the real-time requirement of DC hoist,but also can give correct diagnosis results.
基金supported by the National Natural Science Foundation of China(Nos.52121003,51827901 and 52204110)China Postdoctoral Science Foundation(No.2022M722346)+1 种基金the 111 Project(No.B14006)the Yueqi Outstanding Scholar Program of CUMTB(No.2017A03).
文摘Understanding the variations in microscopic pore-fracture structures(MPFS) during coal creep under pore pressure and stress coupling is crucial for coal mining and effective gas treatment. In this manuscript, a triaxial creep test on deep coal at various pore pressures using a test system that combines in-situ mechanical loading with real-time nuclear magnetic resonance(NMR) detection was conducted.Full-scale quantitative characterization, online real-time detection, and visualization of MPFS during coal creep influenced by pore pressure and stress coupling were performed using NMR and NMR imaging(NMRI) techniques. The results revealed that seepage pores and microfractures(SPM) undergo the most significant changes during coal creep, with creep failure gradually expanding from dense primary pore fractures. Pore pressure presence promotes MPFS development primarily by inhibiting SPM compression and encouraging adsorption pores(AP) to evolve into SPM. Coal enters the accelerated creep stage earlier at lower stress levels, resulting in more pronounced creep deformation. The connection between the micro and macro values was established, demonstrating that increased porosity at different pore pressures leads to a negative exponential decay of the viscosity coefficient. The Newton dashpot in the ideal viscoplastic body and the Burgers model was improved using NMR experimental results, and a creep model that considers pore pressure and stress coupling using variable-order fractional operators was developed. The model’s reasonableness was confirmed using creep experimental data. The damagestate adjustment factors ω and β were identified through a parameter sensitivity analysis to characterize the effect of pore pressure and stress coupling on the creep damage characteristics(size and degree of difficulty) of coal.
基金Supported by the Key Research Program of Chinese Academy of Sciences
文摘Life science has a need for detection methods that are label-free and real-time. In this paper, we have selected staphylococcal protein A (SPA) and swine immunoglobulin G (IgG), and monitor the bindings between SPA and swine IgG with different concentrations, as well as the dissociations of SPA-swine IgG complex in different pH values of phosphate buffer by oblique-incidence reflectivity difference (OIRD) in a label-free and real-time fashion. We obtain the ON and OFF reaction dynamic curves corresponding to the bindings and dissociations of SPA and swine IgG. Through our analysis of the experimental results, we have been able to obtain the damping coefficients and the dissociation time of SPA and swine IgG for different pH values of the phosphate buffer. The results prove that the OIRD technique is a competing method for monitoring the dynamic processes of biomolecule interaction and achieving the quantitative information of reaction kinetics.
基金The authors acknowledge the financial support from the NationalInstitute for Occupational Safety and Health(NIOSH)(No.200-2014-59613)for conducting this research.
文摘Monitoring and assessment of underground climatic conditions are necessary to identify potential hazards and initiate remedial measures in advance that otherwise would lead to disastrous conditions.This paper discusses the concept of real-time monitoring and assessment of climatic conditions in a typical underground mine using sensors and GIS tools by utilizing a laboratory scale model.Typical ventilation parameters including temperature,humidity,and gas concentrations were monitored using sensors in a laboratory setting and various ratios and indices proposed by previous researchers for interpreting fire gases and spontaneous combustion conditions are predicted from the monitored data.GIS tools were used to display this information in real-time on a mine map that would help in creating a safe and comfortable working environment for personnel and equipment working underground.
基金supported by the National Natural Science Foundation of China(No.12305344)the 2023 Anhui university research project of China(No.2023AH052179).
文摘The off situ accurate reconstruction of the core neutron field is an important step in realizing real-time reactor monitoring.The existing off situ reconstruction method of the neutron field is only applicable to cases wherein a single region changes at a specified location of the core.However,when the neutron field changes are complex,the accurate identification of the individual changed regions becomes challenging,which seriously affects the accuracy and stability of the neutron field recon-struction.Therefore,this study proposed a dual-task hybrid network architecture(DTHNet)for off situ reconstruction of the core neutron field,which trained the outermost assembly reconstruction task and the core reconstruction task jointly such that the former could assist the latter in the reconstruction of the core neutron field under core complex changes.Furthermore,to exploit the characteristics of the ex-core detection signals,this study designed a global-local feature upsampling module that efficiently distributed the ex-core detection signals to each reconstruction unit to improve the accuracy and stability of reconstruction.Reconstruction experiments were performed on the simulation datasets of the CLEAR-I reactor to verify the accuracy and stability of the proposed method.The results showed that when the location uncertainty of a single region did not exceed nine and the number of multiple changed regions did not exceed five.Further,the reconstructed ARD was within 2%,RD_(max)was maintained within 17.5%,and the number of RD≥10%was maintained within 10.Furthermore,when the noise interference of the ex-core detection signals was within±2%,although the average number of RD≥10%increased to 16,the average ARD was still within in 2%,and the average RD_(max)was within 22%.Collectively,these results show that,theoretically,the DTHNet can accurately and stably reconstruct most of the neutron field under certain complex core changes.
基金Supported by the National Natural Science Foundation of China(52374067)PetroChina Scientific Research and Technology Development Project(2021ZG12)PetroChina Technology Project(2023ZZ09).
文摘To address the challenges associated with existing separated zone oil production technologies,such as incompatibility with pump inspection operations,short effective working life,and poor communication reliability,an innovative electromagnetic coupling intelligent zonal oil production technology has been proposed.The core and accessory tools have been developed and applied in field tests.This technology employs a pipe string structure incorporation a release sub,which separates the production and allocation pipe strings.When the two strings are docked downhole,electromagnetic coupling enables close-range wireless transmission of electrical power and signals between the strings,powering multiple downhole intelligent production allocators(IPAs)and enabling two-way communication.Core tools adapted to the complex working conditions downhole were developed,including downhole electricity&signal transmission equipment based on electromagnetic coupling(EST),IPAs,and ground communication controllers(GCCs).Accessory tools,including large-diameter release sub anchor and cable-crossing packers,have also been technically finalized.Field tests conducted on ten wells in Daqing Oilfield demonstrated that the downhole docking of the two strings was convenient and reliable,and the EST worked stably.Real-time monitoring of flow rate,pressure and temperature in separate layers and regulation of zonal fluid production were also achieved.This technology has enhanced reservoir understanding and achieved practical production results of increased oil output with reduced water cut.
基金the National Research Foundation of Korea(NRF)Grant funded by the Ministry of Science and ICT(No.2021R1A2C1009926)“Basic project(referring to projects performed with the budget directly contributed by the Government to achieve the purposes of establishment of Government-funded research Institutes)”+3 种基金supported by the KOREA RESEARCH INSTITUTE of CHEMICAL TECHNOLOGY(KRICT)(SS2042-10)Basic research project(Project:21-3212-1)of the Korea institute of GeoscienceMineral resources funded by the Ministry of Science and ICT of Koreaby Nanomedical Devices Development Project of NNFC in 2021.
文摘Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices.However,the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions.In this study,a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process.A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL^(−1)for graphene ink.The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49×10^(4)S m^(−1)and maintains high conductivity under mechanical bending,compressing,and fatigue tests.Based on the as-prepared graphene ink,a printed electrochemical sodium ion(Na^(+))sensor that shows high potentiometric sensing performance was fabricated.Further,by integrating a wireless electronic module,a prototype Na^(+)-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer.The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost,reproducible,and large-scale printing of flexible and wearable electronic devices.
文摘The trigger action response plans (TARPs) are inherent to managing the multiple hazards such as: high gas content with multiple coal seams, high spontaneous combustion (sponcom) propensity, heat and ventilation, TARPs aim to provide assurance and guidance when the situation deviates from the original plan or there is a change conditions that could he hazardous, Over the years, learnings from various incidents has continuously required the coal operations to re-visit the TARP trigger values that were based on historic data or based on guidance values from the industry, In most cases, the background to the basis of TARP statistical data, viz,, average, maximum, hourly, daily for the monitoring or sampling location is also unknown, Introduction of real-time monitoring devices to monitor the gases and airflows has provided greater understanding of the hazard scenarios and their controls, This paper analyses the carbon monoxide data from operating longwall mines and compares these with the historic trigger values to understand the changes and determine improvement opportunities while setting trigger levels in the TARPs, As an example of setting trigger values, those used in during the sealing of a panel are explored in terms of setting values based upon the sampling location and the level of risk, It is envisaged that the learning's shared herein would further enhance the understanding and management of multiple hazards in Australian coal mines,
基金supported by the National Natural Science Foundation of China(Grant No.61271079)
文摘A series of experiments are conducted to confirm whether the vectors calculated for an early section of a continuous non-invasive fetal electrocardiogram (fECG) recording can be directly applied to subsequent sections in order to reduce the computation required for real-time monitoring. Our results suggest that it is generally feasible to apply the initial optimal maternal and fetal ECG combination vectors to extract the fECG and maternal ECG in subsequent recorded sections.