期刊文献+
共找到108,875篇文章
< 1 2 250 >
每页显示 20 50 100
Scheduling transactions in mobile distributed real-time database systems 被引量:1
1
作者 雷向东 赵跃龙 +1 位作者 陈松乔 袁晓莉 《Journal of Central South University of Technology》 EI 2008年第4期545-551,共7页
A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environment... A DMVOCC-MVDA (distributed multiversion optimistic concurrency control with multiversion dynamic adjustment) protocol was presented to process mobile distributed real-time transaction in mobile broadcast environments. At the mobile hosts, all transactions perform local pre-validation. The local pre-validation process is carried out against the committed transactions at the server in the last broadcast cycle. Transactions that survive in local pre-validation must be submitted to the server for local final validation. The new protocol eliminates conflicts between mobile read-only and mobile update transactions, and resolves data conflicts flexibly by using multiversion dynamic adjustment of serialization order to avoid unnecessary restarts of transactions. Mobile read-only transactions can be committed with no-blocking, and respond time of mobile read-only transactions is greatly shortened. The tolerance of mobile transactions of disconnections from the broadcast channel is increased. In global validation mobile distributed transactions have to do check to ensure distributed serializability in all participants. The simulation results show that the new concurrency control protocol proposed offers better performance than other protocols in terms of miss rate, restart rate, commit rate. Under high work load (think time is ls) the miss rate of DMVOCC-MVDA is only 14.6%, is significantly lower than that of other protocols. The restart rate of DMVOCC-MVDA is only 32.3%, showing that DMVOCC-MVDA can effectively reduce the restart rate of mobile transactions. And the commit rate of DMVOCC-MVDA is up to 61.2%, which is obviously higher than that of other protocols. 展开更多
关键词 mobile distributed real-time database systems muliversion optimistic concurrency control multiversion dynamic adjustment pre-validation multiversion data broadcast
在线阅读 下载PDF
A sensor transaction scheduling algorithm for maintaining real-time data temporal validity 被引量:1
2
作者 白天 李国徽 刘云生 《Journal of Central South University》 SCIE EI CAS 2011年第6期2068-2073,共6页
A new scheduling algorithm called deferrable scheduling with time slice exchange (DS-EXC) was proposed to maintain the temporal validity of real-time data. In DS-EXC, the time slice exchange method was designed to fur... A new scheduling algorithm called deferrable scheduling with time slice exchange (DS-EXC) was proposed to maintain the temporal validity of real-time data. In DS-EXC, the time slice exchange method was designed to further defer the release time of transaction instances derived by the deferrable scheduling algorithm (DS-FP). In this way, more CPU time would be left for lower priority transactions and other transactions. In order to minimize the scheduling overhead, an off-line scheme was designed. In particular, the schedule for a transaction set is generated off-line until a repeating pattern is found, and then the pattern is used to construct the schedule on-line. The performance of DS-EXC was evaluated by sets of experiments. The results show that DS-EXC outperforms DS-FP in terms of increasing schedulable ratio. It also provides better performance under mixed workloads. 展开更多
关键词 temporal validity real-time database sensor transaction
在线阅读 下载PDF
Validation concurrency control protocol in parallel real-time database systems 被引量:3
3
作者 LEI Xiang-dong(雷向东) YUAN Xiao-li(袁晓莉) 《Journal of Central South University of Technology》 2002年第3期197-201,共5页
In parallel real-time database systems, concurrency control protocols must satisfy time constraints as well as the integrity constraints. The authors present a validation concurrency control(VCC) protocol, which can e... In parallel real-time database systems, concurrency control protocols must satisfy time constraints as well as the integrity constraints. The authors present a validation concurrency control(VCC) protocol, which can enhance the performance of real-time concurrency control mechanism by reducing the number of transactions that might miss their deadlines, and compare the performance of validation concurrency control protocol with that of HP2PL(High priority two phase locking) protocol and OCC-TI-WAIT-50(Optimistic concurrency control-time interval-wait-50) protocol under shared-disk architecture by simulation. The simulation results reveal that the protocol the author presented can effectively reduce the number of transactions restarting which might miss their deadlines and performs better than HP2PL and OCC-TI-WAIT-50. It works well when arrival rate of transaction is lesser than threshold. However, due to resource contention the percentage of missing deadline increases sharply when arrival rate is greater than the threshold. 展开更多
关键词 PARALLEL dataBASE system real-time dataBASE CONCURRENCY control VALIDATION TRANSACTIONS
在线阅读 下载PDF
基于Real-time PCR法检测乳粉中牛源性成分定量研究
4
作者 陈晨 史国华 +5 位作者 陈勃旭 张瑞 王玉欣 贾文珅 陈佳 周巍 《粮油食品科技》 CAS CSCD 北大核心 2024年第2期159-164,共6页
基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛... 基于Real-timePCR建立了乳粉中牛源性成分相对定量检测方法,并对牛的特异性引物与探针进行了特异性、灵敏度和稳定性测试。通过模拟不同浓度牛乳粉与马乳粉混合样本,根据其△Ct值的函数关系进行线性拟合进而绘制标准曲线,建立乳粉中牛源性成分的相对定量检测。结果显示,该方法的最低检测限为0.00001 mg/mL,回收率为91.11%~119.2%,组间变异系数≤0.58%、组内变异系数≤1.44%。说明该方法在特异性与稳定性上适用于乳粉中牛源性成分及含量的掺假检测。 展开更多
关键词 牛乳粉 马乳粉 real-time PCR 掺假检测
在线阅读 下载PDF
A Framework of LSTM Neural Network Model in Multi-Time Scale Real-Time Prediction of Ship Motions in Head Waves 被引量:1
5
作者 CHEN Zhan-yang ZHAN Zheng-yong +2 位作者 CHANG Shao-ping XU Shao-feng LIU Xing-yun 《船舶力学》 EI CSCD 北大核心 2024年第12期1803-1819,共17页
Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive act... Ship motions induced by waves have a significant impact on the efficiency and safety of offshore operations.Real-time prediction of ship motions in the next few seconds plays a crucial role in performing sensitive activities.However,the obvious memory effect of ship motion time series brings certain difficulty to rapid and accurate prediction.Therefore,a real-time framework based on the Long-Short Term Memory(LSTM)neural network model is proposed to predict ship motions in regular and irregular head waves.A 15000 TEU container ship model is employed to illustrate the proposed framework.The numerical implementation and the real-time ship motion prediction in irregular head waves corresponding to the different time scales are carried out based on the container ship model.The related experimental data were employed to verify the numerical simulation results.The results show that the proposed method is more robust than the classical extreme short-term prediction method based on potential flow theory in the prediction of nonlinear ship motions. 展开更多
关键词 deep learning LSTM ship motion real-time prediction irregular waves
在线阅读 下载PDF
Redox mechanism of geobattery and related electrical signals using a novel real-time self-potential monitoring experimental platform 被引量:2
6
作者 XIE Jing CUI Yi-an +4 位作者 ZHANG Li-juan GUO You-jun CHEN Hang ZHANG Peng-fei LIU Jian-xin 《Journal of Central South University》 CSCD 2024年第11期4155-4173,共19页
Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is w... Controlled laboratory experiments are proved to be a valuable tool for investigating changes in underground physical properties and the related response of surface geophysical signals.The self-potential(SP)method is widely used in mineral resource exploration due to its direct correlation with underground electrochemical gradients.This paper presented the design and construction of an experimental platform based on a multi-channel SP monitoring system.The proposed platform was used to monitor the anodizing corrosion process of different metal blocks from a laboratory perspective,record the real-time SP signal generated by the redox reaction,as well as investigate the geobattery mechanism associated with the natural polarization process of metal mineral resources.The experimental results demonstrate that the constructed SP monitoring platform effectively captures time-series SP signals and provides direct laboratory evidence for the geobattery model.The measured SP data were quantitatively interpreted using the simulated annealing algorithm,and the inversion results closely match the real model.This finding highlights the potential of the SP method as a promising tool for determining the location and spatial distribution of underground polarizers.The study holds reference value for the exploration and exploitation of mineral resources in both terrestrial and marine environments. 展开更多
关键词 SELF-POTENTIAL real-time monitoring laboratory experiment geobattery mechanism quantitative inversion
在线阅读 下载PDF
一种基于real-time PCR技术的TTV检测方法的建立及应用
7
作者 贾毅博 王高玉 +4 位作者 邓宛心 林彩云 杨华 陈运春 尹飞飞 《海南医学院学报》 CAS 北大核心 2024年第7期489-497,共9页
目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域... 目的:本研究旨在开发一种具有更高灵敏度和特异性的TTV检测技术,为揭示TTV在多种疾病过程中的作用提供重要的技术支持。方法:为了更精确、灵敏的检测TTV,本研究分析了目前公布的所有亚型的TTV基因序列,在此基础上建立了一种基于UTR区域的real-time PCR检测方法,并与文献报道应用较为广泛的PCR检测方法进行了对比。结果:本研究建立的方法在1×10^(7)~1×10^(1) copies/μL标准品浓度范围内具有良好的线性关系,相关系数为1.000,斜率为-3.446,检测下限为1×10^(1) copies/μL。重复性试验结果显示,组内变异系数为7.22%,表明本方法重复性、稳定性较强。针对30份临床样本,使用本研究建立的real-time PCR检测方法及目前被多个研究所使用的4套引物进行对比。结果表明,本研究所建立的方法灵敏度显著高于文献中报道的4种方法(P<0.01);Sanger测序结果表明,本方法检测出的30份阳性样本均为TTV,检测特异性为100%。结论:本研究采用基于TaqMan探针的real-time PCR检测方法,检测灵敏性高、覆盖基因型范围广,尤其对于TTV病毒载量较低的情况下能够进行定量检测,对于TTV病毒的致病性及作为免疫标志物的应用提供重要的技术支持。 展开更多
关键词 Torque teno virus 基因组扩增测序 real-time PCR检测
在线阅读 下载PDF
Real-time reliability evaluation based on damaged measurement degradation data 被引量:16
8
作者 王小林 蒋平 +1 位作者 郭波 程志君 《Journal of Central South University》 SCIE EI CAS 2012年第11期3162-3169,共8页
A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not... A method was proposed to evaluate the real-time reliability for a single product based on damaged measurement degradation data.Most researches on degradation analysis often assumed that the measurement process did not have any impact on the product's performance.However,in some cases,the measurement process may exert extra stress on products being measured.To obtain trustful results in such a situation,a new degradation model was derived.Then,by fusing the prior information of product and its own on-line degradation data,the real-time reliability was evaluated on the basis of Bayesian formula.To make the proposed method more practical,a procedure based on expectation maximization (EM) algorithm was presented to estimate the unknown parameters.Finally,the performance of the proposed method was illustrated by a simulation study.The results show that ignoring the influence of the damaged measurement process can lead to biased evaluation results,if the damaged measurement process is involved. 展开更多
关键词 degradation analysis damaged measurement real-time reliability expectation maximization algorithm
在线阅读 下载PDF
Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3
9
作者 ZHANG Yu LI Xiangting +4 位作者 SUN Yalin XUE Aidi ZHANG Yi JIANG Hailong SHEN Weizheng 《智慧农业(中英文)》 CSCD 2024年第4期29-41,共13页
[Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been propo... [Objective]Real-time monitoring of cow ruminant behavior is of paramount importance for promptly obtaining relevant information about cow health and predicting cow diseases.Currently,various strategies have been proposed for monitoring cow ruminant behavior,including video surveillance,sound recognition,and sensor monitoring methods.How‐ever,the application of edge device gives rise to the issue of inadequate real-time performance.To reduce the volume of data transmission and cloud computing workload while achieving real-time monitoring of dairy cow rumination behavior,a real-time monitoring method was proposed for cow ruminant behavior based on edge computing.[Methods]Autono‐mously designed edge devices were utilized to collect and process six-axis acceleration signals from cows in real-time.Based on these six-axis data,two distinct strategies,federated edge intelligence and split edge intelligence,were investigat‐ed for the real-time recognition of cow ruminant behavior.Focused on the real-time recognition method for cow ruminant behavior leveraging federated edge intelligence,the CA-MobileNet v3 network was proposed by enhancing the MobileNet v3 network with a collaborative attention mechanism.Additionally,a federated edge intelligence model was designed uti‐lizing the CA-MobileNet v3 network and the FedAvg federated aggregation algorithm.In the study on split edge intelli‐gence,a split edge intelligence model named MobileNet-LSTM was designed by integrating the MobileNet v3 network with a fusion collaborative attention mechanism and the Bi-LSTM network.[Results and Discussions]Through compara‐tive experiments with MobileNet v3 and MobileNet-LSTM,the federated edge intelligence model based on CA-Mo‐bileNet v3 achieved an average Precision rate,Recall rate,F1-Score,Specificity,and Accuracy of 97.1%,97.9%,97.5%,98.3%,and 98.2%,respectively,yielding the best recognition performance.[Conclusions]It is provided a real-time and effective method for monitoring cow ruminant behavior,and the proposed federated edge intelligence model can be ap‐plied in practical settings. 展开更多
关键词 cow rumination behavior real-time monitoring edge computing improved MobileNet v3 edge intelligence model Bi-LSTM
在线阅读 下载PDF
GF-3 data real-time processing method based on multi-satellite distributed data processing system 被引量:7
10
作者 YANG Jun CAO Yan-dong +2 位作者 SUN Guang-cai XING Meng-dao GUO Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第3期842-852,共11页
Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process... Due to the limited scenes that synthetic aperture radar(SAR)satellites can detect,the full-track utilization rate is not high.Because of the computing and storage limitation of one satellite,it is difficult to process large amounts of data of spaceborne synthetic aperture radars.It is proposed to use a new method of networked satellite data processing for improving the efficiency of data processing.A multi-satellite distributed SAR real-time processing method based on Chirp Scaling(CS)imaging algorithm is studied in this paper,and a distributed data processing system is built with field programmable gate array(FPGA)chips as the kernel.Different from the traditional CS algorithm processing,the system divides data processing into three stages.The computing tasks are reasonably allocated to different data processing units(i.e.,satellites)in each stage.The method effectively saves computing and storage resources of satellites,improves the utilization rate of a single satellite,and shortens the data processing time.Gaofen-3(GF-3)satellite SAR raw data is processed by the system,with the performance of the method verified. 展开更多
关键词 synthetic aperture radar full-track utilization rate distributed data processing CS imaging algorithm field programmable gate array Gaofen-3
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:2
11
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Fishing Effort Estimation of Trawlers Based on Vessel Monitoring System Data
12
作者 LI Dan LU Feng +8 位作者 XU Shuo WANG Yu XUE Muhan NI Hanchen FANG Hui ZHANG Man MA Zhenhua CHEN Zuozhi XU Jian 《农业机械学报》 北大核心 2025年第2期523-532,共10页
Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler... Estimating trawler fishing effort plays a critical role in characterizing marine fisheries activities,quantifying the ecological impact of trawling,and refining regulatory frameworks and policies.Understanding trawler fishing inputs offers crucial scientific data to support the sustainable management of offshore fishery resources in China.An XGBoost algorithm was introduced and optimized through Harris Hawks Optimization(HHO),to develop a model for identifying trawler fishing behaviour.The model demonstrated exceptional performance,achieving accuracy,sensitivity,specificity,and the Matthews correlation coefficient of 0.9713,0.9806,0.9632,and 0.9425,respectively.Using this model to detect fishing activities,the fishing effort of trawlers from Shandong Province in the sea area between 119°E to 124°E and 32°N to 40°N in 2021 was quantified.A heatmap depicting fishing effort,generated with a spatial resolution of 1/8°,revealed that fishing activities were predominantly concentrated in two regions:121.1°E to 124°E,35.7°N to 38.7°N,and 119.8°E to 122.8°E,33.6°N to 35.4°N.This research can provide a foundation for quantitative evaluations of fishery resources,which can offer vital data to promote the sustainable development of marine capture fisheries. 展开更多
关键词 TRAWLER vessel position data machine learning fishing effort
在线阅读 下载PDF
A satellite observation data considered train positioning optimization method with RTK
13
作者 YUCHI Zhen-xin LI Wei +3 位作者 GAO Shi-juan CHEN Chun-yang HUANG Su-su JIANG Ji-xiong 《Journal of Central South University》 2025年第4期1548-1568,共21页
In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based po... In this paper,a novel train positioning method considering satellite raw observation data was proposed,which aims to promote train positioning performance from an innovative perspective of the train satellite-based positioning error sources.The method focused on overcoming the abnormal observations in satellite observation data caused by railway environment rather than the positioning results.Specifically,the relative positioning experimental platform was built and the zero-baseline method was firstly employed to evaluate the carrier phase data quality,and then,GNSS combined observation models were adopted to construct the detection values,which were applied to judge abnormal-data through the dual-frequency observations.Further,ambiguity fixing optimization was investigated based on observation data selection in partly-blocked environments.The results show that the proposed method can effectively detect and address abnormal observations and improve positioning stability.Cycle slips and gross errors can be detected and identified based on dual-frequency global navigation satellite system data.After adopting the data selection strategy,the ambiguity fixing percentage was improved by 29.2%,and the standard deviation in the East,North,and Up components was enhanced by 12.7%,7.4%,and 12.5%,respectively.The proposed method can provide references for train positioning performance optimization in railway environments from the perspective of positioning error sources. 展开更多
关键词 train operation control system train positioning satellite positioning abnormal-data detection real-time kinematic positioning
在线阅读 下载PDF
Reverse design of solid propellant grain based on deep learning:Imaging internal ballistic data
14
作者 Lin Sun Xiangyu Peng +4 位作者 Yang Liu Shu Long Weihua Hui Ran Wei Futing Bao 《Defence Technology(防务技术)》 2025年第8期374-385,共12页
The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they ofte... The reverse design of solid rocket motor(SRM)propellant grain involves determining the grain geometry to closely match a predefined internal ballistic curve.While existing reverse design methods are feasible,they often face challenges such as lengthy computation times and limited accuracy.To achieve rapid and accurate matching between the targeted ballistic curve and complex grain shape,this paper proposes a novel reverse design method for SRM propellant grain based on time-series data imaging and convolutional neural network(CNN).First,a finocyl grain shape-internal ballistic curve dataset is created using parametric modeling techniques to comprehensively cover the design space.Next,the internal ballistic time-series data is encoded into three-channel images,establishing a potential relationship between the ballistic curves and their image representations.A CNN is then constructed and trained using these encoded images.Once trained,the model enables efficient inference of propellant grain dimensions from a target internal ballistic curve.This paper conducts comparative experiments across various neural network models,validating the effectiveness of the feature extraction method that transforms internal ballistic time-series data into images,as well as its generalization capability across different CNN architectures.Ignition tests were performed based on the predicted propellant grain.The results demonstrate that the relative error between the experimental internal ballistic curves and the target curves is less than 5%,confirming the validity and feasibility of the proposed reverse design methodology. 展开更多
关键词 SRM Propellant grain reverse design Time-series data imaging CNN
在线阅读 下载PDF
Controlling update distance and enhancing fair trainable prototypes in federated learning under data and model heterogeneity
15
作者 Kangning Yin Zhen Ding +1 位作者 Xinhui Ji Zhiguo Wang 《Defence Technology(防务技术)》 2025年第5期15-31,共17页
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t... Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios. 展开更多
关键词 Heterogeneous federated learning Model heterogeneity data heterogeneity Contrastive learning
在线阅读 下载PDF
Trajectory prediction algorithm of ballistic missile driven by data and knowledge
16
作者 Hongyan Zang Changsheng Gao +1 位作者 Yudong Hu Wuxing Jing 《Defence Technology(防务技术)》 2025年第6期187-203,共17页
Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve ... Recently, high-precision trajectory prediction of ballistic missiles in the boost phase has become a research hotspot. This paper proposes a trajectory prediction algorithm driven by data and knowledge(DKTP) to solve this problem. Firstly, the complex dynamics characteristics of ballistic missile in the boost phase are analyzed in detail. Secondly, combining the missile dynamics model with the target gravity turning model, a knowledge-driven target three-dimensional turning(T3) model is derived. Then, the BP neural network is used to train the boost phase trajectory database in typical scenarios to obtain a datadriven state parameter mapping(SPM) model. On this basis, an online trajectory prediction framework driven by data and knowledge is established. Based on the SPM model, the three-dimensional turning coefficients of the target are predicted by using the current state of the target, and the state of the target at the next moment is obtained by combining the T3 model. Finally, simulation verification is carried out under various conditions. The simulation results show that the DKTP algorithm combines the advantages of data-driven and knowledge-driven, improves the interpretability of the algorithm, reduces the uncertainty, which can achieve high-precision trajectory prediction of ballistic missile in the boost phase. 展开更多
关键词 Ballistic missile Trajectory prediction The boost phase data and knowledge driven The BP neural network
在线阅读 下载PDF
Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data
17
作者 GONG Yu WANG Ling +3 位作者 ZHAO Rongqiang YOU Haibo ZHOU Mo LIU Jie 《智慧农业(中英文)》 2025年第1期97-110,共14页
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base... [Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management. 展开更多
关键词 tomato growth prediction deep learning phenotypic feature extraction multi-modal data recurrent neural net‐work long short-term memory large language model
在线阅读 下载PDF
Optimal two-channel switching false data injection attacks against remote state estimation of the unmanned aerial vehicle cyber-physical system
18
作者 Juhong Zheng Dawei Liu +1 位作者 Jinxing Hua Xin Ning 《Defence Technology(防务技术)》 2025年第5期319-332,共14页
A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on ... A security issue with multi-sensor unmanned aerial vehicle(UAV)cyber physical systems(CPS)from the viewpoint of a false data injection(FDI)attacker is investigated in this paper.The FDI attacker can employ attacks on feedback and feed-forward channels simultaneously with limited resource.The attacker aims at degrading the UAV CPS's estimation performance to the max while keeping stealthiness characterized by the Kullback-Leibler(K-L)divergence.The attacker is resource limited which can only attack part of sensors,and the attacked sensor as well as specific forms of attack signals at each instant should be considered by the attacker.Also,the sensor selection principle is investigated with respect to time invariant attack covariances.Additionally,the optimal switching attack strategies in regard to time variant attack covariances are modeled as a multi-agent Markov decision process(MDP)with hybrid discrete-continuous action space.Then,the multi-agent MDP is solved by utilizing the deep Multi-agent parameterized Q-networks(MAPQN)method.Ultimately,a quadrotor near hover system is used to validate the effectiveness of the results in the simulation section. 展开更多
关键词 Unmanned aerial vehicle(UAV) Cyber physical systems(CPS) K-L divergence Multi-sensor fusion kalman filter Stealthy switching false data injection(FDI) ATTACKS
在线阅读 下载PDF
运用Real-time PCR方法研究日粮添加豆油与胡麻油对肉牛瘤胃纤维分解菌数量的影响 被引量:13
19
作者 李旦 王加启 +3 位作者 卜登攀 杨舒黎 魏宏阳 周凌云 《动物营养学报》 CAS CSCD 北大核心 2008年第3期256-260,共5页
本研究分别以产琥珀酸丝状杆菌(Fibrobacter succinogenes)、黄色瘤胃球菌(Ruminococcus flavefaciens)、白色瘤胃球菌(Ruminobacter albus)和溶纤维丁酸弧菌(Butyrivibrio fibrisolvens)16S rDNA序列设计引物,运用Real-ti me PCR技术... 本研究分别以产琥珀酸丝状杆菌(Fibrobacter succinogenes)、黄色瘤胃球菌(Ruminococcus flavefaciens)、白色瘤胃球菌(Ruminobacter albus)和溶纤维丁酸弧菌(Butyrivibrio fibrisolvens)16S rDNA序列设计引物,运用Real-ti me PCR技术研究日粮中添加豆油与胡麻油对肉牛上述4种瘤胃纤维分解菌数量的影响。结果表明,与对照组(CK)相比,添加豆油组(LOC1)和胡麻油(LOC2)组,产琥珀酸丝状杆菌(Fibrobacter succinogenes)、黄色瘤胃球菌(Ruminococcus flavefaciens)、白色瘤胃球菌(Ruminobacter albus)和溶纤维丁酸弧菌(Butyrivibrio fibrisol-vens)数量显著减少(P<0.05),分别降低了78%和31%、30%和36%、27%和23%、6%和13%。通过该方法的结果表明日粮中添加4%的豆油和胡麻油显著减少了瘤胃中纤维分解菌,对产琥珀酸丝状杆菌的影响明显。而且采用Real-ti me PCR方法对瘤胃纤维分解菌进行定量,可以快速有效反映出在日粮改变的情况下菌的数量变化趋势,相对于传统计数方法更直观、快捷与准确。 展开更多
关键词 real-time PCR 瘤胃纤维菌 定量 肉牛
在线阅读 下载PDF
非洲猪瘟病毒常规PCR及Real-time PCR检测方法的建立 被引量:22
20
作者 张泉 朱鸿飞 孙怀昌 《中国预防兽医学报》 CAS CSCD 北大核心 2007年第6期458-461,共4页
根据非洲猪瘟病毒(African swine fever virus,ASFV)P72基因的核苷酸序列,设计并合成引物以及荧光标记的TaqMan探针,以含P72基因的重组质粒作为阳性模板,用于常规PCR和Real-time PCR方法的建立,结果表明常规PCR的检测灵敏度是600个拷贝... 根据非洲猪瘟病毒(African swine fever virus,ASFV)P72基因的核苷酸序列,设计并合成引物以及荧光标记的TaqMan探针,以含P72基因的重组质粒作为阳性模板,用于常规PCR和Real-time PCR方法的建立,结果表明常规PCR的检测灵敏度是600个拷贝的病毒核酸分子,Real-time PCR的检测灵敏度是20个拷贝的病毒核酸分子,两种PCR检测方法均具有特异性强、简单快速的优点。可以用于出入境检验检疫部门对非洲猪瘟病毒的快速检测。 展开更多
关键词 非洲猪瘟 常规PCR real-time PCR
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部