期刊文献+
共找到9,434篇文章
< 1 2 250 >
每页显示 20 50 100
中文短文本情感分类:融入位置感知强化的Transformer-TextCNN模型研究
1
作者 李浩君 王耀东 汪旭辉 《计算机工程与应用》 北大核心 2025年第11期216-226,共11页
针对当前中文短文本情感分类模型文本位置信息与关键特征获取不足的问题,提出了一种融入位置感知强化的Transformer-TextCNN情感分类模型。利用BERT可学习绝对位置编码与正弦位置编码强化模型的位置感知能力,融合Transformer的全局上下... 针对当前中文短文本情感分类模型文本位置信息与关键特征获取不足的问题,提出了一种融入位置感知强化的Transformer-TextCNN情感分类模型。利用BERT可学习绝对位置编码与正弦位置编码强化模型的位置感知能力,融合Transformer的全局上下文理解能力与TextCNN的局部特征捕捉能力,分别提取中文短文本全局特征与局部特征,构建位置感知强化与特征协同的情感特征输出服务,实现中文短文本情感准确分类。实验结果表明,该模型在视频弹幕数据集上的准确率达到90.23%,在SMP2020数据集上的准确率达到87.38%。相较于最优的基线模型,准确率在视频弹幕数据集和SMP2020数据集上分别提高了1.98和0.44个百分点,在中文短文本情感分类任务中取得更好的分类效果。 展开更多
关键词 文本情感分类 BERT TRANSFORMER textCNN 位置编码
在线阅读 下载PDF
基于Transformer和Text-CNN的日志异常检测
2
作者 尹春勇 张小虎 《计算机工程与科学》 北大核心 2025年第3期448-458,共11页
日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统... 日志数据作为软件系统中最为重要的数据资源之一,记录着系统运行期间的详细信息,自动化的日志异常检测对于维护系统安全至关重要。随着大型语言模型在自然语言处理领域的广泛应用,基于Transformer的日志异常检测方法被广泛地提出。传统的基于Transformer的方法,难以捕捉日志序列的局部特征,针对上述问题,提出了基于Transformer和Text-CNN的日志异常检测方法LogTC。首先,通过规则匹配将日志转换成结构化的日志数据,并保留日志语句中的有效信息;其次,根据日志特性采用固定窗口或会话窗口将日志语句划分为日志序列;再次,使用自然语言处理技术Sentence-BERT生成日志语句的语义化表示;最后,将日志序列的语义化向量输入到LogTC日志异常检测模型中进行检测。实验结果表明,LogTC能够有效地检测日志数据中的异常,且在2个数据集上都取得了较好的结果。 展开更多
关键词 日志异常检测 深度学习 词嵌入 TRANSFORMER text-CNN
在线阅读 下载PDF
基于Self-Attention和TextCNN-BiLSTM的中文评论文本情感分析模型 被引量:2
3
作者 龙宇 李秋生 《石河子大学学报(自然科学版)》 北大核心 2025年第1期111-121,共11页
目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文... 目前关于中文评论文本的情感分类方法大都无法充分捕捉到句子的全局语义信息,同时也在长距离的语义连接或者情感转折理解上具有局限性,因而导致情感分析的准确度不高。针对这个问题,本文提出一种融合SelfAttention和TextCNN-BiLSTM的文本情感分析方法。该方法首先采用文本卷积神经网络(TextCNN)来提取局部特征,并利用双向长短期记忆网络(BiLSTM)来捕捉序列信息,从而综合考虑了全局和局部信息,在特征融合阶段,再采用自注意力机制来动态地融合不同层次的特征表示,对不同尺度特征进行加权,从而提高重要特征的响应。实验结果表明,所提出的模型在家电商品中文评论语料和谭松波酒店评论语料数据集上的准确率分别达到93.79%和90.05%,相较于基准模型分别提高0.69%~3.59%和4.44%~11.70%,优于传统的基于卷积神经网络(Convolutional Neural Networks, CNN)、BiLSTM或CNN-BiLSTM等的情感分析模型。 展开更多
关键词 自注意力机制 中文评论文本 深度学习 情感分析
在线阅读 下载PDF
面向研究生招生咨询的中文Text-to-SQL模型
4
作者 王庆丰 李旭 +1 位作者 姚春龙 程腾腾 《计算机工程》 北大核心 2025年第3期362-368,共7页
研究生招生咨询是一种具有代表性的短时间高频次问答应用场景。针对现有基于词向量等方法的招生问答系统返回答案不够精确,以及每年需要更新问题库的问题,引入了基于文本转结构化查询语言(Text-to-SQL)技术的RESDSQL模型,可将自然语言... 研究生招生咨询是一种具有代表性的短时间高频次问答应用场景。针对现有基于词向量等方法的招生问答系统返回答案不够精确,以及每年需要更新问题库的问题,引入了基于文本转结构化查询语言(Text-to-SQL)技术的RESDSQL模型,可将自然语言问题转化为SQL语句后到结构化数据库中查询答案并返回。搜集了研究生招生场景中的高频咨询问题,根据3所高校真实招生数据,构建问题与SQL语句模板,通过填充模板的方式构建数据集,共有训练集1501条、测试集386条。将RESDSQL的RoBERTa模型替换为具有更强多语言生成能力的XLM-RoBERTa模型、T5模型替换为mT5模型,并在目标领域数据集上进行微调,在招生领域问题上取得了较高的准确率,在mT5-large模型上执行正确率为0.95,精确匹配率为1。与基于ChatGPT3.5模型、使用零样本提示的C3SQL方法对比,该模型性能与成本均更优。 展开更多
关键词 中文文本转结构化查询语言 自然语言查询 中文SQL语句生成 预训练模型 text-to-SQL数据集
在线阅读 下载PDF
基于TextRank和自注意力的长文档无监督抽取式摘要
5
作者 邢玲 程兵 闫强 《计算机应用与软件》 北大核心 2025年第3期274-283,共10页
针对中文长文档自动文本摘要问题,提出将TextRank与自注意力相融合的两种模型:TRAI和TRAO。TRAI将基于统计共现字数得到的句子相似性同基于自注意力得到的句子相关性进行加权求和,作为TextRank边的权重参与迭代计算,对句子进行打分。TRA... 针对中文长文档自动文本摘要问题,提出将TextRank与自注意力相融合的两种模型:TRAI和TRAO。TRAI将基于统计共现字数得到的句子相似性同基于自注意力得到的句子相关性进行加权求和,作为TextRank边的权重参与迭代计算,对句子进行打分。TRAO利用TextRank对句子打分;利用自注意力重新表示每个句子融合整个文档信息的分布式向量,在此基础上计算句子间余弦相似度,作为TextRank边的权重参与迭代计算,给句子打分;将两种得分加权求和作为句子最终得分。两种模型均根据得分对句子进行排序得到候选摘要。为去除摘要冗余性,利用最大边界相关法(Maximal Marginal Relevance,MMR)在候选摘要中选取摘要句子。将提出的两种模型在构建的长文档上进行实验,与TextRank方法相比,所提方法在ROUGE评价指标上有显著提高。 展开更多
关键词 中文长文本摘要 textRank 自注意力机制 分布式向量表示 语义信息 融合文档信息
在线阅读 下载PDF
基于改进TextRank的科技文本关键词抽取方法 被引量:5
6
作者 杨冬菊 胡成富 《计算机应用》 CSCD 北大核心 2024年第6期1720-1726,共7页
针对科技文本关键词抽取任务中抽取出现次数少但能较好表达文本主旨的词语效果差的问题,提出一种基于改进TextRank的关键词抽取方法。首先,利用词语的词频-逆文档频率(TF-IDF)统计特征和位置特征优化共现图中词语间的概率转移矩阵,通过... 针对科技文本关键词抽取任务中抽取出现次数少但能较好表达文本主旨的词语效果差的问题,提出一种基于改进TextRank的关键词抽取方法。首先,利用词语的词频-逆文档频率(TF-IDF)统计特征和位置特征优化共现图中词语间的概率转移矩阵,通过迭代计算得到词语的初始得分;然后,利用K-Core(K-Core decomposition)算法挖掘KCore子图得到词语的层级特征,利用平均信息熵特征衡量词语的主题表征能力;最后,在词语初始得分的基础上融合层级特征和平均信息熵特征,从而确定关键词。实验结果表明,在公开数据集上,与TextRank方法和OTextRank(Optimized TextRank)方法相比,所提方法在抽取不同关键词数量的实验中,F1均值分别提高了6.5和3.3个百分点;在科技服务项目数据集上,与TextRank方法和OTextRank方法相比,所提方法在抽取不同关键词数量的实验中,F1均值分别提高了7.4和3.2个百分点。实验结果验证了所提方法抽取出现频率低但较好表达文本主旨关键词的有效性。 展开更多
关键词 科技文本 关键词抽取 textRank K-Core图 平均信息熵
在线阅读 下载PDF
多视图融合DJ-TextRCNN的古籍文本主题推荐研究 被引量:3
7
作者 武帅 杨秀璋 何琳 《情报学报》 CSSCI CSCD 北大核心 2024年第1期61-75,共15页
传统编目分类和规则匹配方法存在工作效能低、过度依赖专家知识、缺乏对古籍文本自身语义的深层次挖掘、编目主题边界模糊、较难实现对古籍文本领域主题的精准推荐等问题。为此,本文结合古籍语料特征探究如何实现精准推荐符合研究者需... 传统编目分类和规则匹配方法存在工作效能低、过度依赖专家知识、缺乏对古籍文本自身语义的深层次挖掘、编目主题边界模糊、较难实现对古籍文本领域主题的精准推荐等问题。为此,本文结合古籍语料特征探究如何实现精准推荐符合研究者需求的文本主题内容的方法,以推动数字人文研究的进一步发展。首先,选取本课题组前期标注的古籍语料数据进行主题类别标注和视图分类;其次,构建融合BERT(bidirectional encoder representation from transformers)预训练模型、改进卷积神经网络、循环神经网络和多头注意力机制的语义挖掘模型;最后,融入“主体-关系-客体”多视图的语义增强模型,构建DJ-TextRCNN(DianJi-recurrent convolutional neural networks for text classification)模型实现对典籍文本更细粒度、更深层次、更多维度的语义挖掘。研究结果发现,DJ-TextRCNN模型在不同视图下的古籍主题推荐任务的准确率均为最优。在“主体-关系-客体”视图下,精确率达到88.54%,初步实现了对古籍文本的精准主题推荐,对中华文化深层次、细粒度的语义挖掘具有一定的指导意义。 展开更多
关键词 数字人文 古籍文本 主题推荐 多视图融合 DJ-textRCNN
在线阅读 下载PDF
基于BERT和TextCNN的智能制造成熟度评估方法 被引量:5
8
作者 张淦 袁堂晓 +1 位作者 汪惠芬 柳林燕 《计算机集成制造系统》 EI CSCD 北大核心 2024年第3期852-863,共12页
随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,... 随着智能制造2025目标的临近,企业为了解自身能力水平纷纷加入到智能制造成熟度评估的行列中。然而,由于智能制造成熟度评估标准的复杂性,企业缺乏其对行业水平的了解,导致企业贸然申请,浪费自身时间的同时又占用大量评估资源。鉴于此,设计了一种新的评估流程,采用文本处理算法对整个评估过程进行了重构,通过利用国标文件中智能制造成熟度评估标准,将其作为训练集,采用基于预训练语言模型与文本神经网络(BERT+TextCNN)相结合的智能评估算法代替人工评估。在真实的企业智能制造数据集上的验证表明,当BERT+TextCNN评估模型在卷积核为[2,3,4]、迭代次数为6次、学习率为3e-5时,对智能制造成熟度进行评估,准确率达到85.32%。这表明所设计的评估方法能够较准确地帮助企业完成智能制造成熟度自评估,有助于企业了解自身智能制造能力水平,制定正确的发展方向。 展开更多
关键词 智能制造成熟度模型 BERT预训练语言模型 文本卷积神经网络 评估过程重构
在线阅读 下载PDF
基于改进分层注意网络和TextCNN联合建模的暴力犯罪分级算法 被引量:1
9
作者 张家伟 高冠东 +1 位作者 肖珂 宋胜尊 《计算机应用》 CSCD 北大核心 2024年第2期403-410,共8页
为了科学、智能地对服刑人员的暴力倾向分级,将自然语言处理(NLP)中的文本分类方法引入犯罪心理学领域,提出一种基于改进分层注意网络(HAN)与TextCNN(Text Convolutional Neural Network)两通道联合建模的犯罪语义卷积分层注意网络(CCHA... 为了科学、智能地对服刑人员的暴力倾向分级,将自然语言处理(NLP)中的文本分类方法引入犯罪心理学领域,提出一种基于改进分层注意网络(HAN)与TextCNN(Text Convolutional Neural Network)两通道联合建模的犯罪语义卷积分层注意网络(CCHA-Net),通过分别挖掘犯罪事实与服刑人员基本情况的语义信息,完成暴力犯罪气质分级。首先,采用Focal Loss同时替代两通道中的Cross-Entropy函数,优化样本数量不均衡问题。其次,在两通道输入层中,同时引入位置编码,改进对位置信息的感知能力;改进HAN通道,采用最大池化构建显著向量。最后,输出层都采用全局平均池化替代全连接方法,以避免过拟合。实验结果表明,与AC-BiLSTM(Attention-based Bidirectional Long Short-Term Memory with Convolution layer)、支持向量机(SVM)等17种相关基线模型相比,CCHA-Net各项指标均最优,微平均F1(Micro_F1)为99.57%,宏平均和微平均下的曲线下面积(AUC)分别为99.45%和99.89%,相较于次优的AC-BiLSTM提高了4.08、5.59和0.74个百分点,验证了CCHA-Net能有效胜任暴力犯罪气质分级任务。 展开更多
关键词 深度学习 文本分类 卷积神经网络 分层注意网络 暴力犯罪分级 气质类型
在线阅读 下载PDF
基于SWPF2vec和DJ-TextRCNN的古籍文本主题分类研究 被引量:1
10
作者 武帅 杨秀璋 +1 位作者 何琳 公佐权 《情报学报》 CSSCI CSCD 北大核心 2024年第5期601-615,共15页
以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人... 以编目分类和规则匹配为主的古籍文本主题分类方法存在工作效能低、专家知识依赖性强、分类依据单一化、古籍文本主题自动分类难等问题。对此,本文结合古籍文本内容和文字特征,尝试从古籍内容分类得到符合研究者需求的主题,推动数字人文研究范式的转型。首先,参照东汉古籍《说文解字》对文字的分析方式,以前期标注的古籍语料数据集为基础,构建全新的“字音(说)-原文(文)-结构(解)-字形(字)”四维特征数据集。其次,设计四维特征向量提取模型(speaking,word,pattern,and font to vector,SWPF2vec),并结合预训练模型实现对古籍文本细粒度的特征表示。再其次,构建融合卷积神经网络、循环神经网络和多头注意力机制的古籍文本主题分类模型(dianji-recurrent convolutional neural networks for text classification,DJ-TextRCNN)。最后,融入四维语义特征,实现对古籍文本多维度、深层次、细粒度的语义挖掘。在古籍文本主题分类任务上,DJ-TextRCNN模型在不同维度特征下的主题分类准确率均为最优,在“说文解字”四维特征下达到76.23%的准确率,初步实现了对古籍文本的精准主题分类。 展开更多
关键词 多维特征融合 古籍文本 主题分类 SWPF2vec DJ-textRCNN
在线阅读 下载PDF
基于语义增强模式链接的Text-to-SQL模型 被引量:1
11
作者 吴相岚 肖洋 +1 位作者 刘梦莹 刘明铭 《计算机应用》 CSCD 北大核心 2024年第9期2689-2695,共7页
为优化基于异构图编码器的Text-to-SQL生成效果,提出SELSQL模型。首先,模型采用端到端的学习框架,使用双曲空间下的庞加莱距离度量替代欧氏距离度量,以此优化使用探针技术从预训练语言模型中构建的语义增强的模式链接图;其次,利用K头加... 为优化基于异构图编码器的Text-to-SQL生成效果,提出SELSQL模型。首先,模型采用端到端的学习框架,使用双曲空间下的庞加莱距离度量替代欧氏距离度量,以此优化使用探针技术从预训练语言模型中构建的语义增强的模式链接图;其次,利用K头加权的余弦相似度以及图正则化方法学习相似度度量图使得初始模式链接图在训练中迭代优化;最后,使用改良的关系图注意力网络(RGAT)图编码器以及多头注意力机制对两个模块的联合语义模式链接图进行编码,并且使用基于语法的神经语义解码器和预定义的结构化语言进行结构化查询语言(SQL)语句解码。在Spider数据集上的实验结果表明,使用ELECTRA-large预训练模型时,SELSQL模型比最佳基线模型的准确率提升了2.5个百分点,对于复杂SQL语句生成的提升效果很大。 展开更多
关键词 模式链接 图结构学习 预训练语言模型 text-to-SQL 异构图
在线阅读 下载PDF
CINO-TextGCN:融合CINO与TextGCN的藏文文本分类模型研究 被引量:2
12
作者 李果 杨进 陈晨 《高原科学研究》 CSCD 2024年第1期121-129,共9页
为提高藏文新闻文本分类准确性,文章提出一种融合少数民族语言预训练模型(Chinese Minority Pr-etrained Language Model,CINO)和图卷积神经网络模型(Text Graph Convolutional Networks,TextGCN)的方法,即CINO-TextGCN模型。为有效评... 为提高藏文新闻文本分类准确性,文章提出一种融合少数民族语言预训练模型(Chinese Minority Pr-etrained Language Model,CINO)和图卷积神经网络模型(Text Graph Convolutional Networks,TextGCN)的方法,即CINO-TextGCN模型。为有效评测该模型对藏文文本的分类性能,自建了较大规模和较高质量的藏文新闻文本公开数据集TNEWS(https://github.com/LG2016/CINO-TextGCN),通过实验发现,CINO-Text-GCN在公开数据集TNCC上的准确率为74.20%,在TNEWS上为83.96%。因此,该融合模型能够较好地捕捉到藏文文本语义,提升藏文文本分类性能。 展开更多
关键词 藏文 图卷积神经网络 融合模型 新闻文本 文本分类
在线阅读 下载PDF
J-TEXT动态扰动磁场线圈电磁结构分析
13
作者 宋强 杨锦宏 +5 位作者 桂腾 陈凯杰 席绪尧 江中和 汪卫华 杨清志 《核聚变与等离子体物理》 CAS CSCD 北大核心 2024年第4期436-443,共8页
为了研究J-TEXT装置的动态扰动磁场线圈在放电破裂时刻的受力情况,使用TSC程序对J-TEXT装置进行等离子体放电模拟,得到了放电破裂期间等离子体电流及极向场线圈电流等数据,模拟结果与实验数据吻合。利用有限元分析软件ANSYS建立J-TEXT... 为了研究J-TEXT装置的动态扰动磁场线圈在放电破裂时刻的受力情况,使用TSC程序对J-TEXT装置进行等离子体放电模拟,得到了放电破裂期间等离子体电流及极向场线圈电流等数据,模拟结果与实验数据吻合。利用有限元分析软件ANSYS建立J-TEXT仿真模型,并导入模拟得到的破裂放电数据,将电流数据作为载荷施加在等离子体电流丝、极向场线圈等仿真模型中,对动态扰动磁场线圈进行电磁结构耦合分析,得到扰动磁场线圈受力情况。 展开更多
关键词 J-text 动态扰动磁场线圈 放电模拟 电磁结构耦合
在线阅读 下载PDF
基于Bert-TextCNN的开源威胁情报文本的多标签分类方法 被引量:5
14
作者 陆佳丽 《信息安全研究》 CSCD 北大核心 2024年第8期760-768,共9页
开源威胁情报对网络安全防护十分重要,但其存在着分布广、形式多、噪声大的特点.所以如何能对收集到的海量开源威胁情报进行高效的整理和分析就成为亟需解决的问题.因此,探索了一种以Bert-TextCNN模型为基础且同时考虑标题、正文和正则... 开源威胁情报对网络安全防护十分重要,但其存在着分布广、形式多、噪声大的特点.所以如何能对收集到的海量开源威胁情报进行高效的整理和分析就成为亟需解决的问题.因此,探索了一种以Bert-TextCNN模型为基础且同时考虑标题、正文和正则判断的多标签分类方法.根据情报源发布文本的特点,设置正则判断规则,以弥补模型的欠缺;为更全面反映开源威胁情报文本所涉及的威胁主题,针对标题和正文分别设置了Bert-TextCNN多标签分类模型,并将2部分标签整理去重以得到文本的最终威胁类别.通过与只依据正文建立的Bert-TextCNN多标签分类模型进行对比,所设置的模型在性能上有所提升,且召回率提升明显,能为开源威胁情报分类工作提供有价值的参考. 展开更多
关键词 开源威胁情报 多标签分类 文本分类 Bert模型 textCNN模型
在线阅读 下载PDF
A Study on Short Text Matching Method Based on KS-BERT Algorithm
15
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning Short text matching Graph attention network Knowledge enhancement
在线阅读 下载PDF
基于XLNet和多粒度对比学习的新闻主题文本分类方法 被引量:1
16
作者 陈敏 王雷春 +2 位作者 徐瑞 史含笑 徐渺 《郑州大学学报(理学版)》 CAS 北大核心 2025年第2期16-23,共8页
新闻主题文本内容简短却含义丰富,传统方法通常只考虑词粒度或句粒度向量中的一种进行研究,未能充分利用新闻主题文本不同粒度向量之间的关联信息。为深入挖掘文本的词向量和句向量间的依赖关系,提出一种基于XLNet和多粒度特征对比学习... 新闻主题文本内容简短却含义丰富,传统方法通常只考虑词粒度或句粒度向量中的一种进行研究,未能充分利用新闻主题文本不同粒度向量之间的关联信息。为深入挖掘文本的词向量和句向量间的依赖关系,提出一种基于XLNet和多粒度特征对比学习的新闻主题分类方法。首先,利用XLNet对新闻主题文本进行特征提取获得文本中词、句粒度的特征表示和潜在空间关系;然后,通过对比学习R-Drop策略生成不同粒度特征的正负样本对,以一定权重对文本的词向量-词向量、词向量-句向量和句向量-句向量进行特征相似度学习,使模型深入挖掘出字符属性和语句属性之间的关联信息,提升模型的表达能力。在THUCNews、Toutiao和SHNews数据集上进行实验,实验结果表明,与基准模型相比,所提方法在准确率和F 1值上都有更好的表现,在三个数据集上的F 1值分别达到了93.88%、90.08%、87.35%,验证了方法的有效性和合理性。 展开更多
关键词 自然语言处理 文本分类 新闻主题 XLNet 对比学习
在线阅读 下载PDF
基于文本挖掘的我国航空安全政策研究 被引量:1
17
作者 李柯 张世豪 罗帆 《中国安全生产科学技术》 北大核心 2025年第3期195-200,共6页
为探究我国航空安全政策制定现状及完善方向,采用文本挖掘方法对航空安全政策开展共词分析、聚类分析和多元尺度分析,总结当前政策关注的主要内容及侧重点。研究结果表明:应急救援、航空运输、安全运营、民用航空器的适航管理、机场及... 为探究我国航空安全政策制定现状及完善方向,采用文本挖掘方法对航空安全政策开展共词分析、聚类分析和多元尺度分析,总结当前政策关注的主要内容及侧重点。研究结果表明:应急救援、航空运输、安全运营、民用航空器的适航管理、机场及相关机构的安全管理为当前政策关注焦点;针对通用机场已初步建立分类分级的运行管理体系,新修订的有关航空运输的法律规章基本满足当前业务发展新需求;立足现实需求,民用航空器领域的法制建设尚不成熟,航空应急救援体系和安全运营体系尚需完善。研究结果可为航空安全政策完善提供理论参考。 展开更多
关键词 航空安全政策 文本挖掘 量化分析
在线阅读 下载PDF
基于BiGRU TextCNN框架的漏洞自动分类技术研究
18
作者 张浩 何东昊 《信息安全研究》 CSCD 北大核心 2024年第5期446-452,共7页
通用缺陷枚举(CVE)信息可以用于记录已知漏洞并提供标准化的语义描述,利用CWE信息对漏洞进行分类,可以为漏洞挖掘提供更丰富的背景知识和更详细的预防措施.但由于人工分类的不确定性和漏洞本身信息参数的变化,在具体实践中漏洞分类的准... 通用缺陷枚举(CVE)信息可以用于记录已知漏洞并提供标准化的语义描述,利用CWE信息对漏洞进行分类,可以为漏洞挖掘提供更丰富的背景知识和更详细的预防措施.但由于人工分类的不确定性和漏洞本身信息参数的变化,在具体实践中漏洞分类的准确性亟待提高,此外大量且不断增加的新漏洞对人工分类的效率和准确性也提出了巨大挑战.为解决这一问题,提出了一个基于BiGRU TextCNN模型的漏洞分类方法,可用于对漏洞信息的处理、训练和预测,并根据漏洞自身所表征的描述信息自动进行分类.为验证所提方法的适用性和可行性,首先对不同分类模型进行对比分析,然后利用所提出的框架模型通过对漏洞所表征的描述信息进行预测分类,结果证明了所提方法的正确性. 展开更多
关键词 漏洞分类 文本分类 条件抽取 深度学习 安全告警
在线阅读 下载PDF
粮食安全视角下农业用水权政策文本分析 被引量:1
19
作者 张丽娜 徐梦绮 +2 位作者 吴凤平 史珍 石常峰 《水利经济》 北大核心 2025年第1期48-54,共7页
为进一步优化我国农业用水权政策在保障粮食安全方面的效能,通过系统梳理我国已发布的农业用水权政策,构建“政策主体政策工具政策目标”三维分析框架,利用内容分析法对遴选出的85份相关政策文本予以编码,进行单维统计分析和多维交互分... 为进一步优化我国农业用水权政策在保障粮食安全方面的效能,通过系统梳理我国已发布的农业用水权政策,构建“政策主体政策工具政策目标”三维分析框架,利用内容分析法对遴选出的85份相关政策文本予以编码,进行单维统计分析和多维交互分析。结果表明:我国农业用水权政策在当前粮食安全的大格局下存在一定的优化空间,未来政策应适度调整社会主体参与比例,让更多的主体为保障粮食安全贡献力量;扩大需求型和环境型政策工具的使用,以更好地服务于粮食安全战略;优化政策目标的体系结构,注重农业用水权政策目标的协同共进。 展开更多
关键词 粮食安全 农业用水权 政策文本 内容分析法
在线阅读 下载PDF
符号互文、数据重组与拟像再现——Sora影像叙事的修辞学建构及其审美逻辑 被引量:2
20
作者 张伟 《云南社会科学》 北大核心 2025年第1期162-170,共9页
视觉修辞作为一种认识论的理论属性为考察Sora的先锋艺术实践提供了契机,也使得从宏观、整体性立场审视Sora成为可能。“图—文”关系作为视觉修辞符号层级的审美实践成为Sora文生视频的修辞参照,Sora对语言文本指令的修正与丰富架构了... 视觉修辞作为一种认识论的理论属性为考察Sora的先锋艺术实践提供了契机,也使得从宏观、整体性立场审视Sora成为可能。“图—文”关系作为视觉修辞符号层级的审美实践成为Sora文生视频的修辞参照,Sora对语言文本指令的修正与丰富架构了影像叙事的时空框架,使得由之形成的影像更具“故事性”。Sora对庞大视觉数据的学习与处理铺垫了其影像生成的深层路径,对视觉数据元素的提取与重组及其形成的互文关系成为其视觉叙事的另一修辞表征。“真实感”作为视觉修辞的内在意指为审视Sora的“形象”构建提供了理论合法性,一定程度上也揭示了Sora社会影响力的成因。符号表征、文本构建与传播效应是视觉修辞切入Sora影像叙事的三个视点,它在深度揭示人工智能视觉生产审美本质的同时,也加持了人们审视人类视觉表征场域这一非人化行动者的理性立场。 展开更多
关键词 视觉修辞 SORA “图—文”关系 互文 拟像
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部