期刊文献+
共找到1,059篇文章
< 1 2 53 >
每页显示 20 50 100
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
1
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
在线阅读 下载PDF
Adaptive immune-genetic algorithm for global optimization to multivariable function 被引量:9
2
作者 Dai Yongshou Li Yuanyuan +2 位作者 Wei Lei Wang Junling Zheng Deling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期655-660,共6页
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera... An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability. 展开更多
关键词 immune-genetic algorithm function optimization hyper-mutation density operator.
在线阅读 下载PDF
Optimization of Submarine Hydrodynamic Coefficients Based on Immune Genetic Algorithm 被引量:1
3
作者 胡坤 徐亦凡 《Defence Technology(防务技术)》 SCIE EI CAS 2010年第3期200-205,共6页
Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations... Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations,an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations.Some hydrodynamic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm.By using adaptive weight method to determine the weight and target function,the multi-objective optimization could be translated into single-objective optimization.For a certain kind of submarine,three typical maneuvers were chosen to be the objects of study:overshoot maneuver in horizontal plane,overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane.From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrodynamic coefficient,the efficiency of proposed method is proved. 展开更多
关键词 fluid mechanics SUBMARINE hydrodynamic coefficient adaptive weight immune genetic algorithm optimization
在线阅读 下载PDF
Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network 被引量:1
4
作者 杨淑霞 《Journal of Central South University》 SCIE EI CAS 2008年第S2期327-330,共4页
Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune... Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption. 展开更多
关键词 immune genetic algorithm neural network power CONSUMPTION INCREASING RATE FORECAST
在线阅读 下载PDF
Performance optimization of electric power steering based on multi-objective genetic algorithm 被引量:2
5
作者 赵万忠 王春燕 +1 位作者 于蕾艳 陈涛 《Journal of Central South University》 SCIE EI CAS 2013年第1期98-104,共7页
The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-obj... The vehicle model of the recirculating ball-type electric power steering (EPS) system for the pure electric bus was built. According to the features of constrained optimization for multi-variable function, a multi-objective genetic algorithm (GA) was designed. Based on the model of system, the quantitative formula of the road feel, sensitivity, and operation stability of the steering were induced. Considering the road feel and sensitivity of steering as optimization objectives, and the operation stability of steering as constraint, the multi-objective GA was proposed and the system parameters were optimized. The simulation results show that the system optimized by multi-objective genetic algorithm has better road feel, steering sensibility and steering stability. The energy of steering road feel after optimization is 1.44 times larger than the one before optimization, and the energy of portability after optimization is 0.4 times larger than the one before optimization. The ground test was conducted in order to verify the feasibility of simulation results, and it is shown that the pure electric bus equipped with the recirculating ball-type EPS system can provide better road feel and better steering portability for the drivers, thus the optimization methods can provide a theoretical basis for the design and optimization of the recirculating ball-type EPS system. 展开更多
关键词 vehicle engineering electric power steering multi-objective optimization genetic algorithm
在线阅读 下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
6
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
在线阅读 下载PDF
Modeling and optimization of a multi-carrier renewable energy system for zero-energy consumption buildings 被引量:9
7
作者 SOULEY AGBODJAN Yawovi LIU Zhi-qiang +2 位作者 WANG Jia-qiang YUE Chang LUO Zheng-yi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2330-2345,共16页
For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sec... For the carbon-neutral,a multi-carrier renewable energy system(MRES),driven by the wind,solar and geothermal,was considered as an effective solution to mitigate CO2emissions and reduce energy usage in the building sector.A proper sizing method was essential for achieving the desired 100%renewable energy system of resources.This paper presented a bi-objective optimization formulation for sizing the MRES using a constrained genetic algorithm(GA)coupled with the loss of power supply probability(LPSP)method to achieve the minimal cost of the system and the reliability of the system to the load real time requirement.An optimization App has been developed in MATLAB environment to offer a user-friendly interface and output the optimized design parameters when given the load demand.A case study of a swimming pool building was used to demonstrate the process of the proposed design method.Compared to the conventional distributed energy system,the MRES is feasible with a lower annual total cost(ATC).Additionally,the ATC decreases as the power supply reliability of the renewable system decreases.There is a decrease of 24%of the annual total cost when the power supply probability is equal to 8%compared to the baseline case with 0%power supply probability. 展开更多
关键词 multi-carrier renewable energy system constrained genetic algorithm loss of power supply probability(LPSP)method zero-energy consumption building optimal device capacity
在线阅读 下载PDF
Application of Interval Algorithm in Rural Power Network Planning
8
作者 GU Zhuomu ZHAO Yulin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2009年第3期57-60,共4页
Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization r... Rural power network planning is a complicated nonlinear optimized combination problem which based on load forecasting results, and its actual load is affected by many uncertain factors, which influenced optimization results of rural power network planning. To solve the problems, the interval algorithm was used to modify the initial search method of uncertainty load mathematics model in rural network planning. Meanwhile, the genetic/tabu search combination algorithm was adopted to optimize the initialized network. The sample analysis results showed that compared with the certainty planning, the improved method was suitable for urban medium-voltage distribution network planning with consideration of uncertainty load and the planning results conformed to the reality. 展开更多
关键词 rural power network optimization planning load uncertainty interval algorithm genetic/tabu search combination algorithm
在线阅读 下载PDF
采用改进遗传算法的无线电能传输系统参数优化设计 被引量:3
9
作者 杨阳 章治 +2 位作者 吴雪钰 曹嘉亿 郑晅 《西安交通大学学报》 北大核心 2025年第4期93-104,共12页
针对高阶补偿拓扑的无线电能传输(WPT)系统的谐振参数较多且相互关联,从而导致系统设计时各个元件具体参数难以确定的问题,提出了一种适用于一次侧LCC、二次侧LC串联拓扑(LCC-S)的WPT系统参数优化设计方法。利用MATLAB/Simulink搭建WPT... 针对高阶补偿拓扑的无线电能传输(WPT)系统的谐振参数较多且相互关联,从而导致系统设计时各个元件具体参数难以确定的问题,提出了一种适用于一次侧LCC、二次侧LC串联拓扑(LCC-S)的WPT系统参数优化设计方法。利用MATLAB/Simulink搭建WPT系统仿真平台并进行理论分析,评估了谐振参数、耦合系数和等效负载对该系统输出特性的影响,选择影响程度最复杂的变量作为决策变量,构建系统非线性优化模型;以提高WPT系统的传输效率为目标,在遗传算法基础上加入非线性优化策略,并设计新的突变函数,利用改进后的遗传算法(IGA)给出了系统参数的优化设计方案。仿真结果表明:IGA使系统传输效率达到98.34%,相较遗传算法提高了2.52%,且收敛速度显著提高。搭建WPT系统实验平台并进行测试,结果表明:该系统能够以97.98%的传输效率保持300 W的功率输出;当负载电阻处于6~46Ω时,系统传输效率能够维持在90%以上。研究结果可为LCC-S型WPT系统参数设计提供参考。 展开更多
关键词 无线电能传输 LCC-S型 拓扑结构 改进遗传算法 谐振参数优化
在线阅读 下载PDF
基于层级分解的前围声学包多目标优化 被引量:1
10
作者 杨帅 吴宪 薛顺达 《振动与冲击》 北大核心 2025年第3期267-277,共11页
搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变... 搭建了前围声学包多层级目标分解架构,提出GAPSO-RBFNN(genetic algorithm particle swarm optimization-radial basis function neural network)预测模型,并将其应用于多层级目标分解架构。将材料数据库、覆盖率、泄漏量作为优化的变量范围,以PBNR(power based noise reduction)均值作为约束,以质量和成本作为优化目标,采用非支配排序遗传算法(nondominated sorting genetic algorithm II,NSGA-II)进行多目标优化,得到Pareto多目标解集。并从中选取满足设计目标的最佳组合方案(材料组合、覆盖率、前围过孔密封方案选型)。结果显示,该模型最终的优化结果与实测结果接近,误差分别为0.35%,1.47%,1.82%,相较于初始声学包方案,优化后的结果显示,PBNR均值提升3.05%,其质量降低52.38%,成本降低15.15%,验证了所提方法的有效性和准确性。 展开更多
关键词 GAPSO-RBFNN 声学包 PBNR NSGA-II Pareto多目标解集
在线阅读 下载PDF
基于改进免疫遗传算法的海铁转运设备作业调度优化研究
11
作者 黄鹏飞 谈方娇 +2 位作者 王浩 江瑀越 蔡锦汾 《重庆交通大学学报(自然科学版)》 北大核心 2025年第6期97-107,共11页
集装箱转运作为连接海运与铁路运输的关键环节,其效率直接影响到整个物流链的顺畅运行。缩短集装箱在港停留时间、优化设备作业顺序以及提升转运效率对于实现高效的海铁联运至关重要。但现有研究往往忽视了对集装箱完整转运流程及设备... 集装箱转运作为连接海运与铁路运输的关键环节,其效率直接影响到整个物流链的顺畅运行。缩短集装箱在港停留时间、优化设备作业顺序以及提升转运效率对于实现高效的海铁联运至关重要。但现有研究往往忽视了对集装箱完整转运流程及设备空载时间因素的考虑。鉴于此,针对从船舶卸载至堆场再转至铁路线的全过程,构建了以最小化总作业完成时间为目标函数的数学模型,旨在解决实际存在的连续作业约束、空载等待时间和具体操作位置等问题;通过采用改进后的免疫遗传算法(特别是引入克隆抗体选择机制和自适应参数调整策略)来求解该问题;经过一系列优化对比证明了该方法能更有效地找到最优解或近似最优解,即最短的总作业完成时间及其对应的设备调度方案。研究成果不仅有助于显著减少港口内集装箱的处理周期,还能促进节能减排。 展开更多
关键词 交通运输工程 海铁转运 调度优化 改进免疫遗传算法
在线阅读 下载PDF
基于嵌套优化的GA-PSO-BP神经网络短期风功率预测方法研究 被引量:3
12
作者 刘翘楚 王杰 +3 位作者 秦文萍 张文博 陈玉梅 刘佳昕 《电网与清洁能源》 北大核心 2025年第2期138-146,共9页
短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提... 短期风电功率预测对于保障电力系统稳定运行具有重要意义。针对单一BP(back propagation)神经网络预测模型难以满足风电功率的强随机波动特性,结合遗传算法(geneticalgorithm,GA)和粒子群智能算法(particleswarm optimization,PSO),提出嵌套优化的GA-PSO-BP神经网络短期风电功率预测模型。建立内外双层嵌套的优化机制,内层机制中引入GA算法优化PSO算法学习因子,优化后PSO算法作为外层机制实现BP神经网络阈值和权值的优化。模拟风电数据预测结果表明,比起GA-BP、PSO-BP、长短期记忆网络(long short-term memory,LSTM)预测模型,所提嵌套优化模型在平均绝对误差(mean absolute error,MAE)、均方根误差(root mean squared error,RMSE)、决定系数R2 3个评价维度上均取得了最优值;利用山西某风电场不同月份、不同时段、不同波动特征的实际运行数据进行验证,预测结果表明MAE均小于0.02,R2均大于0.99,所提嵌套优化模型具有较高的预测精度和拟合程度。 展开更多
关键词 风电功率预测 BP神经网络 遗传算法 粒子群算法 嵌套优化
在线阅读 下载PDF
基于改进NSGA-Ⅱ算法的含地热发电电力系统多目标优化调度 被引量:3
13
作者 孔祥祺 张鹏 +4 位作者 孟珣 邵萌 唐涛 张新茹 孙金伟 《热力发电》 北大核心 2025年第2期30-41,共12页
针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,... 针对目前风电、光伏发电波动性大和典型区域消纳困难的问题,将出力可靠、爬坡迅速的地热发电纳入混合能源系统,提出了一种地热发电促进风光消纳的新型混合能源系统优化调度方法。综合考虑运行成本和运行风险,以机组物理特性为约束条件,建立新型混合能源系统多目标优化调度模型;提出滚动修补策略修复种群初始值,基于自适应均衡模型和非支配排序遗传算法求解模型。本算法相较于传统算法更适合解决高维度、高复杂度的约束问题,且收敛速度较快。通过西藏某区域冬季典型日2种场景计算实例对比分析发现,地热发电使风光消纳率分别上升了8.0%、7.9%,同时系统运行成本和风险指数分别下降了2.5%、7.1%。证实地热发电可促进风光消纳和提高电力系统可靠性,为混合能源系统的决策调度提供理论支撑。 展开更多
关键词 混合能源系统 地热发电 多目标优化 自适应均衡模型 非支配排序遗传算法
在线阅读 下载PDF
计及风电场无功支撑性能的多目标优化调度策略 被引量:1
14
作者 杨健 王玮 +2 位作者 周强 付炳喆 任国瑞 《动力工程学报》 北大核心 2025年第1期87-95,105,共10页
为解决高比例新能源接入背景下无功补偿不充分的问题,提出了一种计及风电场无功支撑性能的多目标优化调度策略。从电力系统运行的电压稳定性、无功裕度安全性和功率损耗经济性方面分析了风电场无功支撑性能,构建了考虑多指标满意度区间... 为解决高比例新能源接入背景下无功补偿不充分的问题,提出了一种计及风电场无功支撑性能的多目标优化调度策略。从电力系统运行的电压稳定性、无功裕度安全性和功率损耗经济性方面分析了风电场无功支撑性能,构建了考虑多指标满意度区间的二次函数组,建立了系统多区间动态优化模型;同时,针对无功优化调度问题的非线性、多约束等特征,提出了自适应混沌差分磷虾群算法(A-CDKH);最后,通过修改的IEEE30节点模型和某实际风电场模型上的仿真结果证明了所提策略的优势性及有效性。结果表明:相比于多目标模糊优化模型,采用多目标动态优化模型所求得的电压偏差指标最高可达到32.99%的优化程度;在电压偏差指标上,A-CDKH相比于其他算法最多能优化75.94%。 展开更多
关键词 新能源 风电场 无功优化调度 指标动态优化 自适应混沌差分磷虾群算法
在线阅读 下载PDF
基于多目标鲸鱼算法的配电网动态无功优化研究 被引量:2
15
作者 夏正龙 陈宇 +2 位作者 陆良帅 李灿 张成 《河南师范大学学报(自然科学版)》 CAS 北大核心 2025年第1期116-124,I0007,I0008,共11页
随着光伏、风电等分布式电源大量接入电力系统,对电网的安全性与经济性提出了新的挑战.为了适应风光出力的不确定性,考虑其接入位置对电网的影响,搭建了含风光的配电网动态无功优化模型.采用多目标鲸鱼算法对模型进行求解,将网损、电压... 随着光伏、风电等分布式电源大量接入电力系统,对电网的安全性与经济性提出了新的挑战.为了适应风光出力的不确定性,考虑其接入位置对电网的影响,搭建了含风光的配电网动态无功优化模型.采用多目标鲸鱼算法对模型进行求解,将网损、电压偏差进行归一化,选择了其欧氏距离最小的解作为Pareto最优解集的折中解.最后,通过IEEE标准33节点算例进行仿真分析,结果验证了分布式电源的并入能够有效减少系统网损、电压偏差,与其他传统多目标算法相比,所提的算法能够获得分布更均匀、收敛精度更高的Pareto解集. 展开更多
关键词 分布式电源 动态无功优化 PARETO解集 多目标鲸鱼算法
在线阅读 下载PDF
改进的蜣螂优化算法及光伏发电功率预测应用
16
作者 陈庆明 廖鸿飞 +1 位作者 孙颖楷 梁奇峰 《太阳能学报》 北大核心 2025年第9期445-454,共10页
针对蜣螂优化算法因陷入局部最优值而收敛精度低的问题,提出融合遗传算法改进的蜣螂优化算法,即遗传-蜣螂优化算法(GADBO),同时结合初始化种群和变异扰动的策略,改善局部最优,提高全局搜索能力。通过10个基准函数的测试和对比,验证改进G... 针对蜣螂优化算法因陷入局部最优值而收敛精度低的问题,提出融合遗传算法改进的蜣螂优化算法,即遗传-蜣螂优化算法(GADBO),同时结合初始化种群和变异扰动的策略,改善局部最优,提高全局搜索能力。通过10个基准函数的测试和对比,验证改进GADBO算法的有效性,且GADBO比其他群智能优化算法寻优精度更高。GADBO算法应用于长短期记忆神经网络(LSTM)超参数优化,并建立光伏发电功率预测模型。仿真结果表明,以GADBO算法优化而建立的LSTM预测模型拟合系数为98.45%,平均绝对误差和平均绝对百分比误差也最小,模型的准确度和精度都得到提高,验证GADBO在神经网络优化上的适用性和效果。 展开更多
关键词 遗传算法 蜣螂优化算法 光伏 发电 预测 长短期记忆神经网络
在线阅读 下载PDF
含高渗透率新能源电力系统多目标无功优化方法 被引量:4
17
作者 傅国斌 孙海斌 +4 位作者 王海亭 宋锐 杨国金 黄涛 马嘉昊 《高压电器》 北大核心 2025年第5期291-301,共11页
随着新能源在电力系统中的比例不断增加,其难预测特性使得新型电力系统的电压稳定性面临严峻挑战。为此,提出一种于高比例新能源馈入下计及系统静态电压稳定的无功优化方法。首先,通过分析无功补偿容量与电压静稳L指标的关系,推导综合L-... 随着新能源在电力系统中的比例不断增加,其难预测特性使得新型电力系统的电压稳定性面临严峻挑战。为此,提出一种于高比例新能源馈入下计及系统静态电压稳定的无功优化方法。首先,通过分析无功补偿容量与电压静稳L指标的关系,推导综合L-Q灵敏度指标(comprehensive L-Q sensitivity index),使系统于等量无功注入时电压支撑强度提升。同时,兼顾系统运行安全及经济运行构建多目标无功优化模型,采用多目标差分进化算法(multi-objective differential evolution algorithm,MODEA)求解基于TOPSIS的Pareto最优解。最后,用改进IEEE39节点模型测试,验证了所提方法在计及系统静态电压稳定的无功优化问题处理中的显著优势。 展开更多
关键词 新能源 多目标无功优化 L-Q灵敏度 差分进化算法
在线阅读 下载PDF
基于GA-PSO的矿井通风网络优化方法研究 被引量:2
18
作者 王伟峰 白玉 +3 位作者 杨泽 李寒冰 陈怡帆 马岩松 《矿业安全与环保》 北大核心 2025年第2期24-29,共6页
针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交... 针对煤矿复杂通风网络解算效率低与动态适应性不足的问题,提出一种遗传-粒子群混合算法(GA-PSO)。以矿井通风基本定律和矿用风机特性曲线为约束,建立以最小化通风功耗为目标的优化模型。为克服GA收敛速度慢的缺陷,选取随机竞争与算术交叉-高斯变异算子组合提升种群多样性,增强全局收敛性并避免局部最优;针对PSO的早熟现象,设计潜力粒子替换与冗余粒子重启的淘汰策略,并提出基于适应值标准差的自适应惯性权重调节策略,提高算法全局搜索能力;结合学习因子的动态协同机制,实现全局探索与局部优化的动态平衡。结果表明,优化后的通风机功耗降低16.86%,证明GA-PSO在收敛速度和优化能力方面显著优于单独应用GA或PSO,有效克服了传统方法在复杂风网中的早熟收敛与维度灾难问题,为矿井通风系统节能与安全调控提供理论支撑。 展开更多
关键词 煤矿通风 遗传算法 粒子群优化算法 网络解算优化 风机功耗
在线阅读 下载PDF
基于综合节点关键度的含高比例分布式光伏城市电网微气象监测装置优化配置方法
19
作者 方泽惠 汤奕 +2 位作者 胡健雄 徐晓春 李江成 《太阳能学报》 北大核心 2025年第10期302-312,共11页
为了解决城市复杂微气象导致分布式光伏预测功率误差较大的问题,提出一种计及综合节点关键度的全域优化配置方法对微气象监测装置进行规划。首先从配电网电压和城市微气象影响两个维度提出电气-气象融合的综合节点关键度指标,进而结合... 为了解决城市复杂微气象导致分布式光伏预测功率误差较大的问题,提出一种计及综合节点关键度的全域优化配置方法对微气象监测装置进行规划。首先从配电网电压和城市微气象影响两个维度提出电气-气象融合的综合节点关键度指标,进而结合遗传算法构建并求解微气象监测装置全域优化配置模型。算例结果表明,所提方法能在城市微气象监测装置可观性、灵活性和经济性协调优化的基础上提升高比例分布式光伏城市电网的优化运行能力。 展开更多
关键词 城市电网 分布式发电 微气象 遗传算法 节点关键度 优化配置
在线阅读 下载PDF
多级抽汽热电联产机组的负荷优化分配方法
20
作者 李梦辉 郭琳琳 +3 位作者 刘磊 潘同洋 姚坤 万杰 《汽轮机技术》 北大核心 2025年第4期303-307,共5页
热电联产机组间的负荷分配方式对机组的整体运行经济性影响非常大,当前针对多台热电联产机组间的负荷优化分配研究较多。虽然现有成果已涉及了不同容量或类型的机组及不同的供汽方式等复杂运行边界条件,但未同时考虑具有多个抽汽点的多... 热电联产机组间的负荷分配方式对机组的整体运行经济性影响非常大,当前针对多台热电联产机组间的负荷优化分配研究较多。虽然现有成果已涉及了不同容量或类型的机组及不同的供汽方式等复杂运行边界条件,但未同时考虑具有多个抽汽点的多台热电联产机组联合供汽运行模式。针对该问题,对热电联产机组进行热力特性分析,获取不同抽汽点对系统热耗的影响规律;以热电联供系统的整体热耗率为优化目标,建立了多台热电联产机组在多级抽汽工况下的热耗率计算模型,并通过改进的遗传算法进行寻优,获得不同运行工况下的负荷优化分配方案。以典型两机三级热电联供系统为算例进行分析,结果表明:较优化前的负荷分配方案,单机运行工况下的机组热耗率降低了1.3%左右,双机联合运行工况下的系统整体热耗率降低了2.8%左右;该负荷优化分配方法符合电厂的运行规程,可对机组运行进行辅助决策支持,从而有效降低热电联供系统的整体运行热耗率、提升其运行经济性。 展开更多
关键词 热电联产机组 多级抽汽 经济运行 遗传算法 负荷优化分配
在线阅读 下载PDF
上一页 1 2 53 下一页 到第
使用帮助 返回顶部