The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidenc...The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidence angles up to 60°.The CFSR consists of four functional layers separated by three dielectric slabs,which includes lossless metasurface-Ⅰ(MS-Ⅰ),loss metasurface-Ⅱ(MS-Ⅱ),loss metasurface-Ⅲ(MS-Ⅲ),and a three-dimensional metastructure(3D-MS).MS-Ⅰfunctions as a reflector for two absorption bands with a minimal insertion loss transmission window.MS-Ⅱis designed for high-frequency absorption.MS-Ⅲserves as a low-frequency absorption layer for CFSR and an impedance matching layer for MS-Ⅱ.The design methodologies for the transmission window in MS-III and the introduction of 3D-MS are key to achieving high-performance CFSR.The physical mechanisms of CFSR are explained through equivalent circuit model(ECM)analysis and impedance characterization.Finally,measurement results confirm that the proposed CFSR exhibits a−1 dB transmission band ranging from 8.79 to 10.41 GHz with a minimum insertion loss of 0.44 dB at 9.59 GHz;furthermore,the frequency range where reflection coefficient remains below−10 dB is measured to be between 3.33 and 18.00 GHz,aligning well with simulation outcomes.展开更多
A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded on...A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.展开更多
基金Project(2021RC3003) supported by the Hunan Science and Technology Innovation Talents Program,China。
文摘The present investigation introduces a composite frequency selective Rasorber(CFSR)that demonstrates a wide−1 dB transmission band,two high absorption bands with absorptivity higher than 90%,and large oblique incidence angles up to 60°.The CFSR consists of four functional layers separated by three dielectric slabs,which includes lossless metasurface-Ⅰ(MS-Ⅰ),loss metasurface-Ⅱ(MS-Ⅱ),loss metasurface-Ⅲ(MS-Ⅲ),and a three-dimensional metastructure(3D-MS).MS-Ⅰfunctions as a reflector for two absorption bands with a minimal insertion loss transmission window.MS-Ⅱis designed for high-frequency absorption.MS-Ⅲserves as a low-frequency absorption layer for CFSR and an impedance matching layer for MS-Ⅱ.The design methodologies for the transmission window in MS-III and the introduction of 3D-MS are key to achieving high-performance CFSR.The physical mechanisms of CFSR are explained through equivalent circuit model(ECM)analysis and impedance characterization.Finally,measurement results confirm that the proposed CFSR exhibits a−1 dB transmission band ranging from 8.79 to 10.41 GHz with a minimum insertion loss of 0.44 dB at 9.59 GHz;furthermore,the frequency range where reflection coefficient remains below−10 dB is measured to be between 3.33 and 18.00 GHz,aligning well with simulation outcomes.
文摘A tunable dual polarization absorption-transmission-absorption(A-T-A)frequency selective absorbers(FSR)to address the issue of high insertion loss in current tunable FSRs is proposed.The lumped resistors are loaded onto the lossy layer to absorb electromagnetic waves within the absorption band.The varactor diodes are loaded onto another lossless layer to control the transmission frequency band of the FSR.Its equivalent circuit model is provided.The proposed tunable FSR can change the passband within the range of 14.5~15.5 GHz by changing the bias voltage applied to the lossless transmission layer,while maintaining insertion loss above-1.67 dB.The series resonant structure of the lossy layer generates bilateral absorption bands between 10.2~13.5 GHz and 17.2~22 GHz,with broadband reflection suppression ranging from 10.3 GHz to 22 GHz(70.7%).The prototype is manufactured,and the measured results have verified the simulation results.