期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
1
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth Sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick rapidly-exploring random Trees*(QRRT*)
在线阅读 下载PDF
一种双阶段多智能体路径规划算法 被引量:5
2
作者 李庆华 王佳慧 +1 位作者 李海明 冯超 《科学技术与工程》 北大核心 2021年第22期9425-9431,共7页
多智能体路径规划旨在解决多个智能体在同一工作空间内生成无碰撞路径的问题,是智能体无人化工作的关键支撑技术。基于回溯思想和自适应局部避障策略,提出了一种双阶段多智能体路径规划算法。在全局路径规划阶段,基于回溯思想改进的RRT*... 多智能体路径规划旨在解决多个智能体在同一工作空间内生成无碰撞路径的问题,是智能体无人化工作的关键支撑技术。基于回溯思想和自适应局部避障策略,提出了一种双阶段多智能体路径规划算法。在全局路径规划阶段,基于回溯思想改进的RRT*(rapidly-exploring random trees star)算法(back tracking rapidly-exploring random trees star,BT-RRT*),减少无效父节点,并确保各智能体生成优化的无碰撞路径。在协作避障阶段,智能体依据自身的任务优先级制定局部避障策略,避开动态障碍物和其他智能体。实验结果表明,该算法可成功寻找较优路径,还可降低避障时间。 展开更多
关键词 多智能体 路径规划 BT-RRT*(back tracking rapidly-exploring random trees star)算法 优先级 局部避障
在线阅读 下载PDF
基于均匀概率的目标启发式RRT机械臂路径规划方法 被引量:7
3
作者 左国玉 陈国栋 +2 位作者 刘月雷 龚道雄 李剑锋 《北京工业大学学报》 CAS CSCD 北大核心 2022年第8期812-821,共10页
针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target ... 针对多自由度机械臂在三维空间中轨迹规划的高复杂性、安全性和可靠性等问题,基于快速扩展随机树(rapidly-exploring random trees,RRT)算法在高维空间中的概率完备性和计算轻量性等优势,提出了一种基于均匀概率的目标启发式RRT(target heuristic RRT based on uniform probability,PH-RRT)方法.首先,该方法基于均匀概率的分配机制选取概率采样阈值作为节点标准,并与随机采样值进行比较.当随机采样值在设定的阈值范围内时,确定目标点为随机点进行节点扩展.当随机采样值在设定的阈值范围外时,随机生成随机点,在目标重力和随机点重力的目标启发式作用下进行节点扩展.然后,在已规划出的路径的基础上,进一步引入广度优先搜索思想,针对规划出的路径进行优化处理,提高了路径平滑度并减少了路径长度.实验结果表明,该方法能较好地解决传统RRT方法固有的盲目搜索问题,减少路径规划时间和路径长度,提高机械臂的路径规划效率. 展开更多
关键词 路径规划 路径优化 快速扩展随机树算法(rapidly-exploring random trees RRT) 目标启发 均匀概率 目标重力
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部