In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. First...In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. Firstly, an adaptive regularization based on the local feature of images is introduced to substitute total variational regularization. The oscillatory component containing texture and/or noise is modeled in generalized function space div (BMO). And then, the existence and uniqueness of the minimizer for proposed model are proved. Finally, the gradient descent flow of the Euler-Lagrange equations for the new model is numerically implemented by using a finite difference method. Experiments show that the proposed model is very robust to noise, and the staircasing effect is avoided efficiently, while edges and textures are well remained.展开更多
图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于...图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于零值域分解的深度图像压缩感知方法(range-null space decomposition based deep image compressive sensing network,RND-Net)。该方法通过全局卷积采样的方式稀疏感知图像的特征信息,通过学习信号相关的采样矩阵,使采样值包含更丰富的图像特征,且相较一般的逐块采样方式,在全局层面上的采样可明显减少块状伪影;基于零值域分解的数学表示,将采样与重建过程转化为端到端深度学习模型,借助深度神经网络拟合所涉及的线性或非线性运算,相比传统方法缩短了模型推理时间,提升了图像重建能力。上述将数学先验知识有效融入数据驱动的方法称为协同驱动,既充分利用了数学先验知识,强化了模型的可解释性,使模型结构更易于设计,又发挥了以深度学习为代表的数据驱动方法的自主寻优能力,相比其他深度压缩感知方法更易于获得全局最优解。在多个测试集上的实验证明,RND-Net与目前图像重建能力较好的算法相比显著提升了图像重建质量,减少了单幅图像重建时间。当采样率为0.1、测试集为BSDS68时,RND-Net比AutoBCS在峰值信噪比(PSNR)上平均高1.02 dB。在测试集Set14上,RND-Net对于混合驱动的GPX-ADMM-Net的平均PSNR和结构相似性指数(SSIM)增益分别为1.15dB和0.0518;重建单幅图像时,RND-Net比GPX-ADMM-Net快约0.1049 s。展开更多
针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系...针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。展开更多
在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安...在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安全性。为此建立了包含可再生能源及储能系统的LFC状态空间模型,并分析了FDIA对系统动态特性的影响。通过状态空间分解方法将攻击信号解耦为控制输入攻击和测量攻击,提高检测精度。基于滑模观测器设计攻击估计方法,实现对攻击信号的实时检测。进一步结合H∞控制理论,提出了抗攻击控制(attack-resilient control,ARC)策略,以增强系统在攻击环境下的鲁棒性。仿真算例表明:与传统方法相比攻击估计均方误差降低约30%,系统频率响应稳定性显著提升。结果表明,该方法能够有效检测FDIA并提高电力系统的安全性和抗干扰能力。展开更多
基金supported by the Science and Technology Foundation Program of Chongqing Municipal Education Committee (KJ091208)
文摘In order to avoid staircasing effect and preserve small scale texture information for the classical total variation regularization, a new minimization energy functional model for image decomposition is proposed. Firstly, an adaptive regularization based on the local feature of images is introduced to substitute total variational regularization. The oscillatory component containing texture and/or noise is modeled in generalized function space div (BMO). And then, the existence and uniqueness of the minimizer for proposed model are proved. Finally, the gradient descent flow of the Euler-Lagrange equations for the new model is numerically implemented by using a finite difference method. Experiments show that the proposed model is very robust to noise, and the staircasing effect is avoided efficiently, while edges and textures are well remained.
文摘图像压缩感知能从低采样观测中重建出高质量图像。将深度学习应用于图像压缩感知,可显著提高图像重建质量。然而,基于深度学习的图像压缩感知方法存在模型可解释性差、结构盲目设计而影响重建性能的问题。针对这些问题,提出了一种基于零值域分解的深度图像压缩感知方法(range-null space decomposition based deep image compressive sensing network,RND-Net)。该方法通过全局卷积采样的方式稀疏感知图像的特征信息,通过学习信号相关的采样矩阵,使采样值包含更丰富的图像特征,且相较一般的逐块采样方式,在全局层面上的采样可明显减少块状伪影;基于零值域分解的数学表示,将采样与重建过程转化为端到端深度学习模型,借助深度神经网络拟合所涉及的线性或非线性运算,相比传统方法缩短了模型推理时间,提升了图像重建能力。上述将数学先验知识有效融入数据驱动的方法称为协同驱动,既充分利用了数学先验知识,强化了模型的可解释性,使模型结构更易于设计,又发挥了以深度学习为代表的数据驱动方法的自主寻优能力,相比其他深度压缩感知方法更易于获得全局最优解。在多个测试集上的实验证明,RND-Net与目前图像重建能力较好的算法相比显著提升了图像重建质量,减少了单幅图像重建时间。当采样率为0.1、测试集为BSDS68时,RND-Net比AutoBCS在峰值信噪比(PSNR)上平均高1.02 dB。在测试集Set14上,RND-Net对于混合驱动的GPX-ADMM-Net的平均PSNR和结构相似性指数(SSIM)增益分别为1.15dB和0.0518;重建单幅图像时,RND-Net比GPX-ADMM-Net快约0.1049 s。
文摘针对正交时频空(Orthogonal Time Frequency Space, OTFS)调制系统中均衡器性能不佳及线性滤波器复杂度较高等问题,提出了一种LU(Lower-Upper)分解与迭代最小均方误差(Iterative Minimum Mean Square Error, IMMSE)均衡器结合的OTFS系统信号检测算法(LU-IMMSE)。该算法依据时延多普勒域稀疏信道矩阵的特征,采用一种低复杂度的LU分解方法,以避免MMSE均衡器求解矩阵逆的过程,在保证均衡器性能的前提下降低了均衡器复杂度。在OTFS系统中引入一种IMMSE均衡器,通过不断迭代更新发送符号均值和方差这些先验信息来逼近MMSE均衡器最优估计值。LU-IMMSE算法通过调节迭代次数可以有效降低误比特率。在比特信噪比为8 dB时,5次迭代后的LU-IMMSE均衡器误比特率相比传统的MMSE均衡器降低了约11 dB。随着迭代次数的增大,较传统IMMSE算法降低了计算复杂度。在最大时延系数为4、符号数为16的情况下,与直接求逆相比,所提出的低复杂度LU分解方法降低了约91.72%的矩阵求逆计算复杂度。
文摘在可再生能源高渗透率的背景下,电力系统的负荷频率控制(load frequency control,LFC)面临虚假数据注入攻击(false data injection attack,FDIA)的安全威胁。现有检测方法难以有效区分控制输入攻击和测量数据攻击,影响系统的稳定性和安全性。为此建立了包含可再生能源及储能系统的LFC状态空间模型,并分析了FDIA对系统动态特性的影响。通过状态空间分解方法将攻击信号解耦为控制输入攻击和测量攻击,提高检测精度。基于滑模观测器设计攻击估计方法,实现对攻击信号的实时检测。进一步结合H∞控制理论,提出了抗攻击控制(attack-resilient control,ARC)策略,以增强系统在攻击环境下的鲁棒性。仿真算例表明:与传统方法相比攻击估计均方误差降低约30%,系统频率响应稳定性显著提升。结果表明,该方法能够有效检测FDIA并提高电力系统的安全性和抗干扰能力。