In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimat...In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time non...Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.展开更多
The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this pro...The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this problem, a random step penetration algorithm with normal distribution starting time is proposed. Using the shaping filters and adjoint system method, the miss distance with different starting times can be acquired. According to the penetration standard, the time window ensuring successful penetration can be calculated and it is used as the 3σ bound of the normally distributed random maneuver. Simulation results indicate that the normally distributed random maneuver has higher penetration probability than the uniformly distributed random maneuver.展开更多
单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究...单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究设计了一种基于极值特征值差与特征值几何平均(difference of extreme eigenvalues and geometric average of eigenvalues,DEEGAE)的多主用户信号检测判决规则;提出了一种基于Wishart矩阵特征值统计分布理论的感知判决门限的闭式求解方法。该算法在频谱感知过程中直接利用认知用户的多天线接收数据构造判决规则并实施感知判决,具有全盲检测的优点;通过融合2种极限特征值门限分析结果,提高了非渐近感知条件下感知结果的准确性。Monte-Carlo仿真试验表明,新算法具有比经典的最大最小特征值之比算法和协方差绝对值检测算法更优的多主用户信号检测性能,同时能获得比传统基于最大最小特征值之差及其改进算法更为可靠的检测结果;与此同时,新算法的检测性能随着样本数目以及天线数目的增大而显著提升。展开更多
文摘In this research combustion of aluminum dust particles in a quiescent medium with spatially discrete sources distributed in a random way was studied by a numerical approach.A new thermal model was generated to estimate flame propagation speed in a lean/rich reaction medium.Flame speed for different particle diameters and the effects of various oxidizers such as carbon dioxide and oxygen on flame speed were studied.Nitrogen was considered the inert gas.In addition,the quenching distance and the minimum ignition energy(MIE) were studied as a function of dust concentration.Different burning time models for aluminum were employed and their results were compared with each other.The model was based on conduction heat transfer mechanism using the heat point source method.The combustion of single-particle was first studied and the solution was presented.Then the dust combustion was investigated using the superposition principle to include the effects of surrounding particles.It is found that larger particles have higher values of quenching distance in comparison with smaller particles in an assumed dust concentration.With the increase of dust concentration the value of MIE would be decreased for an assumed particle diameter.Considering random discrete heat sources method,the obtained results of random distribution of fuel particles in space provide closer and realistic predictions of the combustion physics of aluminum dust flame as compared with the experimental findings.
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金Project(50490272) supported by the National Natural Science Foundation of China project(2004036430) supported bythe Postdoctoral Science Foundation of China
文摘Blast vibration analysis constitutes the foundation for studying the control of blasting vibration damage and provides the precondition of controlling blasting vibration. Based on the characteristics of short-time nonstationary random signal, the laws of energy distribution are investigated for blasting vibration signals in different blasting conditions by means of the wavelet packet analysis technique. The characteristics of wavelet transform and wavelet packet analysis are introduced. Then, blasting vibration signals of different blasting conditions are analysed by the wavelet packet analysis technique using MATLAB; energy distribution for different frequency bands is obtained. It is concluded that the energy distribution of blasting vibration signals varies with maximum decking charge,millisecond delay time and distances between explosion and the measuring point. The results show that the wavelet packet analysis method is an effective means for studying blasting seismic effect in its entirety, especially for constituting velocity-frequency criteria.
文摘The random step maneuver with uniformly distributed starting times has the disadvantage that it cannot focus the starting time on the more efficiency time. It decreases the penetration probability. To resolve this problem, a random step penetration algorithm with normal distribution starting time is proposed. Using the shaping filters and adjoint system method, the miss distance with different starting times can be acquired. According to the penetration standard, the time window ensuring successful penetration can be calculated and it is used as the 3σ bound of the normally distributed random maneuver. Simulation results indicate that the normally distributed random maneuver has higher penetration probability than the uniformly distributed random maneuver.
文摘单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究设计了一种基于极值特征值差与特征值几何平均(difference of extreme eigenvalues and geometric average of eigenvalues,DEEGAE)的多主用户信号检测判决规则;提出了一种基于Wishart矩阵特征值统计分布理论的感知判决门限的闭式求解方法。该算法在频谱感知过程中直接利用认知用户的多天线接收数据构造判决规则并实施感知判决,具有全盲检测的优点;通过融合2种极限特征值门限分析结果,提高了非渐近感知条件下感知结果的准确性。Monte-Carlo仿真试验表明,新算法具有比经典的最大最小特征值之比算法和协方差绝对值检测算法更优的多主用户信号检测性能,同时能获得比传统基于最大最小特征值之差及其改进算法更为可靠的检测结果;与此同时,新算法的检测性能随着样本数目以及天线数目的增大而显著提升。