The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE ...The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.展开更多
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi...This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.展开更多
针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水...针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水污染溯源结果的影响,并由此提出了基于等距随机抽样方法(equidistant random sampling)的两阶段多链Metropolis Hastings算法(ERS-TSMH).仿真结果表明,传统的MH算法和TSMH算法在求解时易陷入局部最优值或不收敛的情况,前者接受率在20%左右,后者却达到近50%;多链ERS-MH算法提高了反演的准确性,但经过10 000次左右迭代后收敛,效率低下;多链ERS-TSMH算法在保证溯源精度的同时,在5 000次左右迭代后收敛,效率显著提高且表现出高稳定性和可靠性.展开更多
单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究...单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究设计了一种基于极值特征值差与特征值几何平均(difference of extreme eigenvalues and geometric average of eigenvalues,DEEGAE)的多主用户信号检测判决规则;提出了一种基于Wishart矩阵特征值统计分布理论的感知判决门限的闭式求解方法。该算法在频谱感知过程中直接利用认知用户的多天线接收数据构造判决规则并实施感知判决,具有全盲检测的优点;通过融合2种极限特征值门限分析结果,提高了非渐近感知条件下感知结果的准确性。Monte-Carlo仿真试验表明,新算法具有比经典的最大最小特征值之比算法和协方差绝对值检测算法更优的多主用户信号检测性能,同时能获得比传统基于最大最小特征值之差及其改进算法更为可靠的检测结果;与此同时,新算法的检测性能随着样本数目以及天线数目的增大而显著提升。展开更多
基金Supported by Basic and Applied Basic Research Project of Guangdong Province(2021B0301030006)。
文摘The random forest algorithm was applied to study the nuclear binding energy and charge radius.The regularized root-mean-square of error(RMSE)was proposed to avoid overfitting during the training of random forest.RMSE for nuclides with Z,N>7 is reduced to 0.816 MeV and 0.0200 fm compared with the six-term liquid drop model and a three-term nuclear charge radius formula,respectively.Specific interest is in the possible(sub)shells among the superheavy region,which is important for searching for new elements and the island of stability.The significance of shell features estimated by the so-called shapely additive explanation method suggests(Z,N)=(92,142)and(98,156)as possible subshells indicated by the binding energy.Because the present observed data is far from the N=184 shell,which is suggested by mean-field investigations,its shell effect is not predicted based on present training.The significance analysis of the nuclear charge radius suggests Z=92 and N=136 as possible subshells.The effect is verified by the shell-corrected nuclear charge radius model.
基金the National Natural Science Foundation of China(Grant No.42274119)the Liaoning Revitalization Talents Program(Grant No.XLYC2002082)+1 种基金National Key Research and Development Plan Key Special Projects of Science and Technology Military Civil Integration(Grant No.2022YFF1400500)the Key Project of Science and Technology Commission of the Central Military Commission.
文摘This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results.
文摘针对经典MCMC(Markov chain Monte Carlo)算法求解河流水污染源信息(排放量、排放时间和排放位置)时初始点的选取和接受率不高导致的计算效率低下问题,通过COMSOL仿真软件构建污染物二维扩散模型,利用不同算法对比分析了上述两方面对水污染溯源结果的影响,并由此提出了基于等距随机抽样方法(equidistant random sampling)的两阶段多链Metropolis Hastings算法(ERS-TSMH).仿真结果表明,传统的MH算法和TSMH算法在求解时易陷入局部最优值或不收敛的情况,前者接受率在20%左右,后者却达到近50%;多链ERS-MH算法提高了反演的准确性,但经过10 000次左右迭代后收敛,效率低下;多链ERS-TSMH算法在保证溯源精度的同时,在5 000次左右迭代后收敛,效率显著提高且表现出高稳定性和可靠性.
文摘单主用户信号的出现主要引起多天线接收信号取样协方差矩阵中极值特征值的变化,而多主用户信号的出现则会同时扰动取样协方差矩阵极值特征值和其他特征值,此时,经典的极值特征值检测算法则会表现出次佳的检测性能。针对这一问题,本研究设计了一种基于极值特征值差与特征值几何平均(difference of extreme eigenvalues and geometric average of eigenvalues,DEEGAE)的多主用户信号检测判决规则;提出了一种基于Wishart矩阵特征值统计分布理论的感知判决门限的闭式求解方法。该算法在频谱感知过程中直接利用认知用户的多天线接收数据构造判决规则并实施感知判决,具有全盲检测的优点;通过融合2种极限特征值门限分析结果,提高了非渐近感知条件下感知结果的准确性。Monte-Carlo仿真试验表明,新算法具有比经典的最大最小特征值之比算法和协方差绝对值检测算法更优的多主用户信号检测性能,同时能获得比传统基于最大最小特征值之差及其改进算法更为可靠的检测结果;与此同时,新算法的检测性能随着样本数目以及天线数目的增大而显著提升。