期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
基于三种群粒子群优化策略的移动机器人路径规划
1
作者 王珂 姜春艳 +1 位作者 黄黎 张新海 《深圳大学学报(理工版)》 北大核心 2025年第4期447-454,I0006-I0008,共11页
针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索... 针对移动机器人在复杂环境路径规划中存在的全局搜索能力不足、易陷入局部最优及路径质量欠佳等问题,提出一种基于三种群粒子群优化(three-population particle swarm optimization,TPPSO)策略的移动机器人路径规划算法.该算法通过探索群、开发群和增强群的协同进化机制,增强了全局搜索与局部开发能力.探索群利用粒子质量评估和随机选择策略更新速度;开发群采用线性认知系数动态调整机制;增强群引入较大随机分量以减少局部最优影响.算法引入随机扰动策略,当搜索性能停滞时对粒子群施加扰动,以增强多样性.在单峰函数(F_(1))、带噪声单峰函数(F_(4))和多峰函数(F_(9))3类基准函数测试中,TPPSO算法的平均值和标准差均优于传统PSO算法、SAVPSO算法和RRT*算法,验证了其优异的优化性能和稳定性.在4个10 m×10 m的二维标准环境中生成的路径能有效规避障碍物并减少不必要的迂回,路径质量最优.复杂环境验证实验进一步发现,在动态多障碍物环境中的规划成功率达91.5%;三维环境中的平均爬升率为10.7%.TPPSO算法能有效解决移动机器人在复杂环境下的路径规划问题. 展开更多
关键词 计算机应用 路径规划 粒子群优化 进化算法 线性认知系数 随机扰动
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
2
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子群优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于改进RRT与GA的多目标路径规划——以无人机林区巡检为例
3
作者 张彪 康峰 许舒婷 《北京林业大学学报》 北大核心 2025年第4期129-141,共13页
【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法... 【目的】为解决无人机在人工林区巡检任务(如病虫害监测、火灾预防等)中的路径规划问题,即求解巡检点的最优遍历序列以及生成避障飞行轨迹,本文通过融合改进快速随机扩展树(RRT)算法和遗传算法(GA),提出一种多目标路径规划算法。【方法】首先改进传统GA,使其能够在三维空间中遍历所有巡检点并求解最优序列。其次,依据该序列进行路径搜索,改进RRT算法的随机采样原理,通过靶心和绕树策略实现避障效果,并采用连续选择父节点策略,取消因避障产生的多余转折点。最后,通过3次B样条曲线优化,生成最终路径。【结果】仿真结果表明,本算法能够在复杂林区环境中遍历所有巡检点,并在短时间内规划出高质量、无碰撞的路径。与粒子群算法(PSO)、蚁群算法(ACO)和RRT算法相比,当巡检点从3个增加到9个时,PSO、ACO、RRT算法搜索时间分别增加了221.77%、332.42%、184.78%,而本算法仅增加了102.35%。在9个巡检点的复杂环境中,本算法的路径耗散分别比PSO、ACO和RRT算法降低了14.46%、30.28%、24.76%,且路径质量显著提高,消除了路径交叉重合现象。此外,通过ROS平台,利用无人机在林区点云上进行模拟飞行并验证成功,证明本算法适用于林区巡检的多目标路径规划。【结论】针对人工林区无人机巡检任务中的飞行路线规划问题,本文通过改进RRT与GA,成功规划出一条遍历所有巡检点且避开林区障碍物的无碰撞路径。相较于PSO、ACO和RRT算法,本算法在路径质量、路径耗散和搜索时间上均表现出显著优势。 展开更多
关键词 多目标优化 路径规划 快速随机扩展树(RRT) 遗传算法(GA) 无人机 粒子群算法(PSO) 蚁群算法(ACO)
在线阅读 下载PDF
基于机器学习的煤层气井产能预测与压裂参数优化
4
作者 胡秋嘉 刘春春 +5 位作者 张建国 崔新瑞 王千 王琪 李俊 何珊 《油气藏评价与开发》 北大核心 2025年第2期266-273,299,共9页
沁水盆地南部煤层气区块储层非均质性强,气井产能预测难度大,且压裂施工缺乏针对性设计,导致压裂后井间生产效果差异显著。为此,基于沁水盆地南部187口煤层气直井的地质、测井、压裂和生产数据,构建了基于多任务学习策略的随机森林算法... 沁水盆地南部煤层气区块储层非均质性强,气井产能预测难度大,且压裂施工缺乏针对性设计,导致压裂后井间生产效果差异显著。为此,基于沁水盆地南部187口煤层气直井的地质、测井、压裂和生产数据,构建了基于多任务学习策略的随机森林算法的气井产能预测模型,并通过粒子群优化算法优化压裂参数。研究使用深度卷积自动编码-解码器处理测井曲线等非结构化数据,采用随机森林算法结合多任务学习策略,有效缓解了样本数据有限和泛化性能低的问题,使得模型在小样本数据下仍能保持较高的预测精度。分析结果表明:深度、施工液量和小粒径支撑剂用量是影响产能的主要因素;地质条件是决定气井长期产能的关键因素;压裂参数则主要影响气井的峰值产能。多任务学习的随机森林算法在小样本数据上表现出高预测精度,测试集中峰值30d和5a累产气量的决定系数(R^(2))分别为0.883和0.887。对6口新井的5a累产气量预测R^(2)达0.901,显示出模型在实际应用中的高准确性和稳定性。通过粒子群优化算法对压裂参数进行优化后的方案,能够显著提高气井的产能分类等级或提升气井的产能水平。优化后的预测单井产能比原实际方案提高了约153%至188%,显示出优化方案在实际应用中的显著效果。通过结合多任务学习和粒子群优化算法,成功解决了小样本数据下的产能预测及压裂参数优化问题。构建的产能预测模型和压裂参数优化算法为沁水盆地南部煤层气高效开发提供了理论支持和实践参考。 展开更多
关键词 煤层气 随机森林算法 多任务学习 粒子群优化算法 产能预测 压裂参数优化
在线阅读 下载PDF
基于LMD-QPSO-LSTM的离散再制造系统动态瓶颈预测方法
5
作者 汪家炜 王艳 +1 位作者 纪志成 刘相 《现代制造工程》 北大核心 2025年第6期150-160,57,共12页
离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term... 离散再制造业普遍存在影响生产效率的瓶颈问题,传统的静态瓶颈识别方法难以有效解决复杂再制造环境中的动态瓶颈漂移问题。针对这一现象,提出了一种基于局部均值分解(Local Mean Decomposition, LMD)方法结合长短期记忆(Long Short-Term Memory, LSTM)网络并利用改进量子粒子群(Quantum Particle Swarm Optimization, QPSO)算法优化的LMD-QPSO-LSTM动态瓶颈预测模型。首先,采用机器能耗属性定义动态瓶颈指数,并基于LMD方法分解瓶颈序列以降低数据的波动性。其次,引入注意力机制(Attention Mechanism, AM)来增强LSTM网络的学习能力,同时采用改进的QPSO算法优化LSTM网络选取最优参数。最后,对瓶颈指数的分量进行预测,并将预测结果重构。仿真实验结果表明,基于LMD-QPSO-LSTM的动态瓶颈预测方法可以有效提高预测精度,且能够准确地跟踪瓶颈位置的变化。与其他模型相比,所提方法至少将平均绝对误差(Mean Absolute Error, MAE)降低了52.63%,平均百分比误差(Mean Absolute Percentage Error, MAPE)降低了25.14%,均方根误差(Root Mean Square Error, RMSE)降低了45.78%。 展开更多
关键词 局部均值分解 长短期记忆网络 改进量子粒子群算法 动态瓶颈预测 瓶颈漂移
在线阅读 下载PDF
基于天气特征的高速公路交通流预测方法研究
6
作者 袁辉 谢庆 +3 位作者 计明军 吴炜昌 曾斌 姬生忠 《现代电子技术》 北大核心 2025年第8期164-172,共9页
随着高速公路网络的规模扩展和智能交通系统的不断完善,交通流预测在提高道路资源利用效率和缓解交通拥堵方面起着至关重要的作用。现有的预测方法往往忽视了天气特征动态变化对交通流的影响,故文中旨在运用集成深度学习模型来探索天气... 随着高速公路网络的规模扩展和智能交通系统的不断完善,交通流预测在提高道路资源利用效率和缓解交通拥堵方面起着至关重要的作用。现有的预测方法往往忽视了天气特征动态变化对交通流的影响,故文中旨在运用集成深度学习模型来探索天气特征对高速公路交通流的影响。利用随机森林算法从历史交通流量和天气数据中提取出相关性较高的天气特征,采用粒子群优化算法对长短期记忆神经网络模型的超参数进行优化,构建一个融合天气特征数据的深度学习预测框架,将经过筛选的天气特征序列输入至预测框架模型中进行训练和预测。通过真实数据集上的实验验证了所提方法的有效性和泛化能力。实验结果表明,所提的集成深度学习方法相比现有的深度学习方法具有更好的拟合度、预测精度和稳定性,能够更准确地捕捉天气特征动态变化对交通流的影响。 展开更多
关键词 智能交通系统 高速公路交通流预测 天气特征 集成深度学习 随机森林算法 粒子群优化算法 长短期记忆神经网络 超参数优化
在线阅读 下载PDF
气动调节阀粘滞故障检测与参数辨识方法研究 被引量:1
7
作者 向方娜 管桉琦 +2 位作者 林振浩 金志江 钱锦远 《流体机械》 CSCD 北大核心 2024年第8期23-30,共8页
为了研究气动调节阀的粘滞特性问题,以CHEN粘滞模型作为阀门粘滞特性问题的基础模型,提出一种阀门粘滞故障的检测与改进的参数辨识方法。通过搭建粘滞故障试验台,模拟实际情况中发生不同程度粘滞时的阀杆运动状态,揭示阀门粘滞发生的机... 为了研究气动调节阀的粘滞特性问题,以CHEN粘滞模型作为阀门粘滞特性问题的基础模型,提出一种阀门粘滞故障的检测与改进的参数辨识方法。通过搭建粘滞故障试验台,模拟实际情况中发生不同程度粘滞时的阀杆运动状态,揭示阀门粘滞发生的机理。使用随机森林算法对振荡源进行分类,实现对粘滞故障的检测。使用基于Hammerstein模型的粒子群优化算法求解粘滞参数最优解,提出粘滞双参数取值范围的确定方法,实现欠补偿、无补偿和过补偿3种状态下的粘滞参数辨识。结果表明:阀门粘滞程度与阀杆所受动静摩擦力有关;在不考虑外界因素的影响下,提出的粘滞检测方法对4种振荡源的分类准确率达到99.0268%;提出的改进的粘滞参数辨识方法对不同大小粘滞参数的辨识结果误差达到7%以内。研究成果为阀门粘滞故障的检测和参数辨识提供了理论方法,对粘滞模型的改进具有实际参考价值。 展开更多
关键词 气动调节阀 粘滞特性 粘滞检测 粘滞参数辨识 随机森林算法 粒子群优化算法
在线阅读 下载PDF
改进融合指标的新型盲解卷积算法在轴承故障诊断中的应用 被引量:2
8
作者 田甜 唐贵基 +1 位作者 田寅初 王晓龙 《噪声与振动控制》 CSCD 北大核心 2024年第1期162-167,共6页
为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随... 为解决现有盲解卷积算法易受随机脉冲影响的问题,综合时域特征和频域特征,提出一个新的故障敏感指标,即包络谱峭度-包络基尼系数融合指标(Envelope Spectral Kurtosis-envelope Gini Index,ESKEG)。该指标对周期性脉冲更敏感,不易受随机脉冲的影响。基于该指标,提出一个新的解卷积算法,即基于最大ESKEG的盲解卷积,并采用粒子群算法(Particle Swarm Optimization,PSO)求解滤波器系数。通过仿真振动信号和实验仿真信号进行验证,结果表明相比于其他盲解卷积算法,所提出的PSO-ESKEG算法在故障先验知识未知的情况下,能更有效避免受到随机脉冲信号的影响。 展开更多
关键词 故障诊断 盲解卷积 包络谱峭度-包络基尼系数 粒子群优化 随机脉冲
在线阅读 下载PDF
基于CF与优化RF模型耦合的泰山地区地质灾害易发性评价 被引量:1
9
作者 咸利民 季民 +1 位作者 刘法军 李强 《水土保持通报》 CSCD 北大核心 2024年第5期134-143,共10页
[目的]针对泰山地区地质灾害频发这一现状,研究并构建地质灾害易发性评价模型,为该地区的地质灾害预防与治理工作提供参考。[方法]以泰山地区为研究区,采用确定性系数模型与粒子群算法优化RF模型耦合的方法,完成对研究区的地质灾害易发... [目的]针对泰山地区地质灾害频发这一现状,研究并构建地质灾害易发性评价模型,为该地区的地质灾害预防与治理工作提供参考。[方法]以泰山地区为研究区,采用确定性系数模型与粒子群算法优化RF模型耦合的方法,完成对研究区的地质灾害易发性评价。该方法是利用确定性系数(CF)模型计算影响因子对地质灾害的敏感值,作为模型训练的属性值,引入粒子群算法对随机森林(RF)模型进行参数寻优,提高模型对地质灾害的预测精度和准确度。选取坡度、距道路距离、土地利用类型、植被指数等11个影响因子,采用皮尔逊相关系数法和多重共线性检查进行影响因子筛选择优,绘制ROC和PR曲线对训练模型进行精度评价。[结果]CF-PSO-RF耦合模型相比单一SVR、单一RF和CF-PSO-SVR模型的极高易发区面积比例分别提高10.55%,10.04%和5.08%,AUC值分别提高14%,5.1%和1.7%,AP精度分别提高了11.7%,4.4%,1.2%。预测结果显示,泰山地区的极高、高易发区主要位于泰山景区、岱岳区北部等地形起伏和坡度较大的区域,面积所占比例为28.05%,涵盖了60.1%的地质灾害点;相反,低、极低易发区主要分布在建设用地、农田等地势平坦区域,面积比例为59.26%。[结论]将确定性系数模型与优化后RF模型耦合,相比单一模型精度有进一步的提升,又优于CF-PSO-SVR模型精度,评价结果符合实际情况。 展开更多
关键词 地质灾害易发性评价 粒子群算法 确定性系数模型(CF) 随机森林模型(RF) 支持向量机模型(SVM) 泰山地区
在线阅读 下载PDF
融合差分进化和Sine混沌的改进粒子群算法 被引量:7
10
作者 马乐杰 邹德旋 +2 位作者 李灿 邵莹莹 杨志龙 《计算机工程与应用》 CSCD 北大核心 2024年第19期80-96,共17页
将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分... 将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分进化算法中的交叉操作,采用淘汰机制随机搜索策略,提高算法的全局搜索能力,提高算法收敛速度。为了验证融合差分进化和Sine混沌的改进粒子群算法(improved particle swarm optimization algorithm,IPSO)的性能,与基于压缩学习因子的粒子群算法(yield-based particle swarm optimization,YPSO)、自适应加权粒子群算法(self-adaptive particle swarm optimization,SPSO)等PSO相关算法以及蜘蛛蜂优化算法(spider wasp optimization,SWO)、能量谷算法(energy valley algorithm,EVA)等2023年最新算法相比较,验证融合差分进化和Sine混沌的改进粒子群算法(IPSO)的有效性。在不同维度下解决12个常用基准函数,对12个测试函数进行实验,并与其他的几种算法进行比较,实验结果表明,改进后的PSO算法收敛速度快,收敛精度高。 展开更多
关键词 粒子群优化算法 Sine映射 差分进化算法 交叉操作 随机搜索策略
在线阅读 下载PDF
麻雀搜索算法-粒子群算法与快速扩展随机树算法协同优化的智能车辆路径规划 被引量:7
11
作者 张志文 刘伯威 +2 位作者 张继园 唐杰 张天赐 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期993-999,1009,共8页
针对智能汽车在面对多样化工作场景时其路径规划算法存在响应时间长、规划效率低的问题,提出了多元协同优化策略。首先,融合麻雀搜索算法(SSA)的警惕机制与粒子群算法(PSO)的种群寻优特性,对PSO算法中的惯性权重因子和学习因子进行优化... 针对智能汽车在面对多样化工作场景时其路径规划算法存在响应时间长、规划效率低的问题,提出了多元协同优化策略。首先,融合麻雀搜索算法(SSA)的警惕机制与粒子群算法(PSO)的种群寻优特性,对PSO算法中的惯性权重因子和学习因子进行优化;其次,提出“三角布线”搜索规则,对快速扩展随机树算法(RRT)进行双向优化(RRT-Connect);然后,基于MATLAB软件建立了复杂环境道路仿真模型,对上述优化方案进行了仿真验证。结果表明,相较于单一的优化方案,协同优化算法在路径长度与规划时间上均具有显著的优势。对两种协同优化方案的应用场景进行了实车试验,结果显示:在局部路径规划中,SSA-PSO算法响应时间更短,规划效率更高,而在全局路径规划中,“三角布线”RRT-Connect算法更具优势。 展开更多
关键词 路径规划 麻雀搜索算法 粒子群算法 三角布线 快速扩展随机树算法
在线阅读 下载PDF
基于RRT-Dubins的无人机航迹优化方法 被引量:5
12
作者 王东振 张岳 +1 位作者 赵宇 黄大庆 《兵工学报》 EI CAS CSCD 北大核心 2024年第8期2761-2773,共13页
针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优... 针对多障碍物环境下考虑无人机(Unmanned Aerial Vehicle,UAV)始末位姿、转弯半径和航迹长度的1阶光滑约束的UAV航迹规划问题,提出一种基于快速搜索随机树(Rapidly-exploring Random Trees,RRT)算法和Dubins曲线以局部最优逼近全局最优的UAV航迹优化方法。利用RRT算法和基于贪心算法的剪枝优化方法,在二维任务空间中规划出满足避障要求的可行离散航路点。采用多条Dubins曲线平滑连接航路点,根据UAV始末位姿确定首尾曲线端点,基于UAV性能、障碍物和飞行参数的约束关系,建立多约束的航迹优化数学模型。通过粒子群优化算法确定曲线类型,同时优化曲线连接处位姿和曲线半径,获得最短航迹。仿真结果表明:所提方法得到的航迹与其他方法相比,在不同障碍物数量和始末位姿的多种场景中,平均长度缩短了11.48%,在避开障碍物的同时,满足UAV动力学约束。 展开更多
关键词 无人机航迹规划 快速搜索随机树算法 Dubins曲线 粒子群优化算法 航迹优化
在线阅读 下载PDF
基于γ随机搜索策略的无人机集群海上任务分配
13
作者 吴秋实 郭杰 +3 位作者 康振亮 张宝超 王浩凝 唐胜景 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第12期3872-3883,共12页
针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引... 针对无人机(UAV)集群海上作战态势复杂、作战任务多样、作战单元异构的特点,建立了海上无人机集群多目标任务分配优化模型,并针对该模型提出了一种基于γ随机搜索策略的改进离散粒子群算法(γ-DPSO)。将作战态势细节与复杂作战需求等引入无人机集群任务分配问题,建立契合作战场景的无人机集群任务分配作战模型;基于粒子编码矩阵,设计均衡搜索策略、γ随机搜索策略、分阶段自适应参数,提出基于γ随机搜索策略的改进离散粒子群算法,解决离散粒子群算法易陷入局部最优造成未成熟收敛的问题。仿真结果表明:针对所建立的符合海上作战特点的无人机集群多目标任务分配优化模型,所提算法可有效解决无人机集群多目标任务分配问题,所提改进策略提高了算法的收敛速度与算法精度。 展开更多
关键词 无人机 协同任务分配 离散粒子群算法 随机搜索策略 均衡搜索策略
在线阅读 下载PDF
基于混合智能优化算法的输变电工程全环节关键数据处理方法 被引量:4
14
作者 何琳 黄博 +1 位作者 申亚波 李爽 《沈阳工业大学学报》 CAS 北大核心 2024年第3期263-269,共7页
为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种... 为了提升输变电工程全环节的数据管理质效,提出了一种基于混合智能优化算法的输变电工程全环节关键数据处理方法。该方法以造价数据管理为核心,利用层次分析法建立工程造价控制评估模型,获得了造价评估指标与指标权重。同时设计了一种改进的随机邻域嵌入算法实现数据降维,进而引入经自适应改进的鲸鱼优化算法及粒子群算法。在交叉策略框架下,将两者相结合并得到鲸鱼粒子群混合优化算法。实验结果表明,所提方法对输变电工程全环节关键数据的处理效果较优,而与其他方法相比,其精度和效率也均具备显著优势,能够提升数据管理水平。 展开更多
关键词 输变电工程 全环节 鲸鱼粒子群混合优化算法 随机邻域嵌入算法 工程造价 关键数据 交叉策略 数据管理 层次分析法
在线阅读 下载PDF
融合早熟检测机制和对立随机游走策略的粒子群优化算法
15
作者 陈健华 吴张倩 宋威 《计算机应用》 CSCD 北大核心 2024年第S2期123-128,共6页
针对现存粒子群优化(PSO)算法易早熟和收敛速度慢的问题,提出一种融合早熟检测机制和对立随机游走策略的粒子群优化算法(PDORW-PSO)。首先,通过引入平移参数的方法改进Sigmoid函数,以确保在自变量较小时,函数输出值也较小;其次,将全局... 针对现存粒子群优化(PSO)算法易早熟和收敛速度慢的问题,提出一种融合早熟检测机制和对立随机游走策略的粒子群优化算法(PDORW-PSO)。首先,通过引入平移参数的方法改进Sigmoid函数,以确保在自变量较小时,函数输出值也较小;其次,将全局极值连续未变的次数作为改进后Sigmoid函数的自变量,以计算种群早熟的概率;最后,基于2个随机候选解和粒子历史最优解的反向解更新粒子位置,从而增强种群逃离局部最优的能力。所提算法与经典PSO算法以及5种改进后的PSO算法在8种经典测试函数上的对比实验的结果表明,所提算法的收敛精度和收敛速度和6种对比算法相比,在5种测试函数上排名第一。可见,PDORW-PSO的收敛精度和收敛速度较对比算法有较大提升。 展开更多
关键词 粒子群优化算法 改进Sigmoid函数 早熟检测 对立学习 随机游走
在线阅读 下载PDF
兼容需求侧资源的“源-网-荷-储”协调优化调度模型 被引量:92
16
作者 曾鸣 杨雍琦 +2 位作者 向红伟 王丽华 曾博 《电力自动化设备》 EI CSCD 北大核心 2016年第2期102-111,共10页
提出通过提高需求侧和供应侧资源的协调可控性来应对当前电力系统双侧随机问题的新思路,在此基础上设计需求侧响应模型、储能设备充放电模型、风电及光伏发电出力预测模型,并构建以系统成本及污染排放最小化为目标函数的"源-网-荷-... 提出通过提高需求侧和供应侧资源的协调可控性来应对当前电力系统双侧随机问题的新思路,在此基础上设计需求侧响应模型、储能设备充放电模型、风电及光伏发电出力预测模型,并构建以系统成本及污染排放最小化为目标函数的"源-网-荷-储"优化调度模型及相应的多目标粒子群优化算法。通过算例分析比较有无需求侧资源情况下的系统成本和污染排放,验证了所提模型和算法的科学性与合理性,以及需求侧资源在提高系统稳定性、节能减排方面的重要作用。 展开更多
关键词 需求侧资源 双侧随机问题 多目标粒子群优化算法 优化 调度 负荷管理 储能
在线阅读 下载PDF
基于随机子空间和AdaBoost的自适应集成方法 被引量:14
17
作者 姚旭 王晓丹 +1 位作者 张玉玺 邢雅琼 《电子学报》 EI CAS CSCD 北大核心 2013年第4期810-814,共5页
如何构造差异性大且精确度高的基分类器是集成学习的重点,为此提出一种新的集成学习方法——利用PSO寻找使得AdaBoost依样本权重抽取的数据集分类错误率最小化的最优特征权重分布,依据此最优权重分布对特征随机抽样生成随机子空间,并应... 如何构造差异性大且精确度高的基分类器是集成学习的重点,为此提出一种新的集成学习方法——利用PSO寻找使得AdaBoost依样本权重抽取的数据集分类错误率最小化的最优特征权重分布,依据此最优权重分布对特征随机抽样生成随机子空间,并应用于AdaBoost的训练过程中.这就在增加分类器间差异性的同时保证了基分类器的准确度.最后用多数投票法融合各基分类器的决策结果,并通过仿真实验验证该方法的有效性. 展开更多
关键词 集成学习 随机子空间 ADABOOST算法 粒子群优化
在线阅读 下载PDF
粒子群算法中随机数参数的设置与实验分析 被引量:70
18
作者 刘志雄 梁华 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第11期1489-1496,共8页
粒子群算法的相关参数,对粒子群算法的优化性能有着重要影响,本文针对粒子群算法模型中随机数参数的设置问题展开实验分析.首先,由于各种高级程序语言的结构不同,在粒子群算法的实现程序中,对速度更新公式内同一个粒子速度向量,其各个... 粒子群算法的相关参数,对粒子群算法的优化性能有着重要影响,本文针对粒子群算法模型中随机数参数的设置问题展开实验分析.首先,由于各种高级程序语言的结构不同,在粒子群算法的实现程序中,对速度更新公式内同一个粒子速度向量,其各个分量的随机数参数的设置各不相同.其次,根据连续函数优化问题和作业车间调度问题中的典型测试算例,以及对于设备拥有量参数优化问题的计算,表明在粒子群算法中设置不同的随机数参数将对粒子群算法的优化性能产生较大影响,并且,对一个粒子速度向量中的不同分量所对应的随机数参数,如果设置相同的值,可以有效地提高粒子群算法的优化效率. 展开更多
关键词 粒子群算法 随机数 参数设置 调度 优化
在线阅读 下载PDF
集成随机惯性权重和差分变异操作的樽海鞘群算法 被引量:10
19
作者 张志强 鲁晓锋 +1 位作者 隋连升 李军怀 《计算机科学》 CSCD 北大核心 2020年第8期297-301,共5页
为了提高樽海鞘群算法(Salp Swarm Algorithm,SSA)的收敛速度、计算精度和全局优化能力,在分析总结粒子群优化(Particle Swarm Optimization,PSO)和差分进化(Differential Evolution,DE)算法相关研究成果后,提出了一种集成PSO算法随机... 为了提高樽海鞘群算法(Salp Swarm Algorithm,SSA)的收敛速度、计算精度和全局优化能力,在分析总结粒子群优化(Particle Swarm Optimization,PSO)和差分进化(Differential Evolution,DE)算法相关研究成果后,提出了一种集成PSO算法随机惯性权重和DE算法差分变异操作的改进SSA算法——iSSA。首先,将PSO算法的随机惯性权重引入SSA算法的追随者位置更新公式中,用于增强和平衡SSA算法的勘探与开发能力;其次,用DE算法的变异操作替代SSA算法的领导者位置更新操作,以提高SSA算法的收敛速度和计算精度。为了检验随机惯性权重和差分变异操作对SSA算法的改进效果,在多个高维基准函数上进行了仿真实验,并与其他改进SSA算法进行了比较。实验结果及分析表明,与SSA算法和两个典型的改进SSA算法(ESSA和CASSA)相比,集成随机惯性权重和差分变异操作的iSSA算法,在没有增加算法时间复杂度的情况下,显著地提高了SSA算法的收敛速度、计算精度和全局优化能力,并且优于ESSA算法和CASSA算法。 展开更多
关键词 樽海鞘群算法 群体智能 粒子群优化 随机惯性权重 差分进化 变异操作
在线阅读 下载PDF
随机摄动粒子群优化算法 被引量:12
20
作者 余炳辉 袁晓辉 +1 位作者 王金文 权先璋 《计算机工程》 CAS CSCD 北大核心 2006年第12期189-190,276,共3页
基于粒子群优化算法种群结构相对独立的特点,提出了一种改进的粒子群优化算法——随机摄动粒子群优化算法。该算法通过对每一次进化计算后记忆中的最优粒子进行随机摄动操作来提高解的精度和算法的搜索效率,同时通过对种群中的最差粒子... 基于粒子群优化算法种群结构相对独立的特点,提出了一种改进的粒子群优化算法——随机摄动粒子群优化算法。该算法通过对每一次进化计算后记忆中的最优粒子进行随机摄动操作来提高解的精度和算法的搜索效率,同时通过对种群中的最差粒子重新进行初始化来保持种群的多样性以避免陷入局部最优解。通过典型复杂函数测试表明,随机摄动粒子群优化算法的优化性能和效率远远超过基本粒子群优化算法。 展开更多
关键词 粒子群优化算法 随机摄动 进化种群多样性
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部